сверхизлучения, выбором активной среды в виде вытянутого образца с числом Френеля, близким к единице. Использование резонатора приводит к сокращению длительности импульса даже по сравнению с одномодовым сверхизлучением, так как $\tau_0/\tau_c = 1 - R_0 < 1$. При длинах активной среды $l \leq 1$ см длительность импульса лежит в пикосекундной и субпикосекундной областях.

СПИСОК ЛИТЕРАТУРЫ

[1] Андреев А. В., Емельянов В. И., Ильинский Ю. А.//УФН. 1980. 131. С. 652—694. [2] Gross M., Haroche S.//Phys. Reports. 1982. 93. Р. 1—99.

Поступила в редакцию 04.08.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 2

ОПТИКА И СПЕКТРОСКОПИЯ

УДК 535.6

НЕЛИНЕЙНАЯ ГИРОТРОПИЯ В ТИОГАЛЛАТЕ СЕРЕБРА

В. А. Грабовский, Н. И. Желудев

(кафедра общей физики и волновых процессов)

1. Тиогаллат серебра AgGaS₂ (класс 42 m) — один из наиболее изученных материалов квантовой электроники. Интерес к AgGaS₂ обусловлен в первую очередь его оптическими [1] и нелинейно-оптическими свойствами [2], позволяющими разрабатывать эффективные преобразователи лазерного излучения в ИК диапазоне [3, 4]. Практическое значение представляет исследование пространственной дисперсии в этом кристалле, поскольку сильная оптическая активность [5] и наличие «изотропной точки» (длины волны света, для которой линейное двулучепреломление отсутствует) делают AgGaS₂ одной из наиболее перспективных сред для создания узкополосных оптических фильтров [6]. В тиогаллате серебра исследованы электрогирация (индуцированная постоянным электрическим полем гиротропия) [7, 8] и электрооптический эффект [9, 10].

Предметом настоящей работы является исследование самоиндуцированного, т. е. зависящего от интенсивности, поворота плоскости поляризации света (нелинейной оптической активности [11]) и нелинейного поглощения в кристалле тиогаллата серебра.

2. Структура тензора гирации AgGaS₂ запрещает наблюдение естественной оптической активности вдоль направления оптической оси, что делает исследование частотной зависимости естественной вращательной способности крайне сложной задачей, и измерение удельной константы вращения из-за эллиптического двулучепреломления возможно только в районе «изотропной точки» кристалла. Однако мощная линейно поляризованная электромагнитная волна может испытывать самоиндуцированиее вращение направления поляризации и вдоль оптической оси. Физические механйзмы нелинейной оптической активности (НОА) ранее детально исследовались для кристаллов высшей и средней категорий в работе [11], где показано, что в области прозрачности вдоль оптической оси нелинейное вращение плоскости поляризации световой волны в кристаллах 42 m описывается соотношением

$$\Delta\beta = \beta (l) - \beta (0) = \frac{3\omega^2 E^2}{c^2} \left[\operatorname{Re} \left\{ \gamma_{XXXYZ}^{(3)} + \operatorname{Re} \left\{ \gamma_{XYYYZ}^{(3)} \right\} + \left(\operatorname{Re} \left\{ \gamma_{XXXYZ}^{(3)} - \operatorname{Re} \left\{ \gamma_{XYYYZ}^{(3)} \right\} \right) \cdot \cos 2\beta (0) \right] \frac{l}{2} + \frac{3\omega^2 E^2}{8c^2 K} \operatorname{Im} \left\{ \chi_{XXXX}^{(3)} - 3\chi_{XXYY}^{(3)} \right\} l \sin 4\beta (0),$$

где β — угол поворота плоскости поляризации, отсчитанный от направления <100>; Е — напряженность электрического поля световой волны с частотой ω ; с — скорость света в вакууме; l — длина кристалла. Нелинейные восприимчивости определены в материальном уравнении

$$D_i^{NL} = \chi^{(3)}_{ilkj} E_l E_k E_j + \gamma^{(3)}_{imljk} E_m E_l \nabla_k E_j.$$

8Ľ

Заметим, что величина угла самоиндуцированного поворота плоскости поляризации $\Delta\beta$ зависит от направления поляризации света на входе в кристалл (угол $\beta(0)$), что позволяет экспериментально разделить вклады в самовращение пространственной дисперсии нелинейности ($\gamma_{XXXYZ}^{(3)}$ и $\gamma_{XYYYZ}^{(3)}$) и анизотропии нелинейного поглощения ($\chi_{XXXX}^{(3)} - 3\chi_{XXYY}^{(3)}$), измеряя зависимость угла НОА от ориентации образца.

3. Измерения проводились на длине волны второй гармоники основного излучения $Nd^{3+}AHI$ лазера ($\lambda=0.582$ мкм). Схема установки приведена на рис. 1. Длительность оптических импульсов ~30 пс, частота следования ~2 Гц. Указанная

Рис. 1. Оптическая схема нелинейного поляризатора-денситометра: \mathcal{I} — АИГ:Nd³⁺-лазер с синхронизацией мод и системой выделения моноимпульса; $\Pi \mathcal{I}$ — нелинейный преобразователь частоты лазерного излучения в частоту второй гармоники; $\mathcal{I}I$, $\mathcal{I}2$ — линзы; K — исследуемый кристалл; Π — поляризатор; $A\mu$ — анализатор; A, B, C, \mathcal{I} — фотоприемники; HBK — измерительно-вычислительный комплекс на базе ЭВМ ДЗ-28; I, II — позиции нейтрального ослабляющего фильтра

длина волны соответствует области прозрачности кристалла, однако удвоенная энергия кванта превышает ширину запрещенной зоны, что обеспечивает двухфотонный резонанс для кубических нелинейных восприимчивостей, ответственных за НОА. Из-

мерения угла поворота плоскости поляризации и расчет нелинейных восприимчивостей с учетом пространственно-временного профиля пучка проводились по методике, описанной в [12]. Особенностью данного эксперимента было измерение в каждой лазерной вспышке энергий импульсов на частоте излучения накачки и второй гармоники, что позволяло контролировать относительные энергию и длительность каж-

Рис. 2. Зависимость удельной константы НОА от ориентации кристалла AgGaS₂ относительно плоскости поляризации света на входе в кристалл (k||(001)). На врезке показан фурье-спектр приведенной зависимости; пунктирной линией отмечен уровень измерительного шума

дого лазерного импульса и значительно повысить точность и воспроизводимость результатов. Эксперименты проводились с образцами длиной 6÷8 мм при средней плотности мощности возбуждающего излучения ~1. ГВт/см².

4. Константа нелинейного поглощения тиогаллата серебра на длине волны $\lambda = -0.532$ мкм составила $K_2 = (2.9 \pm 0.3) \cdot 10^{-3}$ МВт⁻¹·см ($k \parallel < 001 >$). Зависимость удельного параметра нелинейного вращения плоскости поляризации света в кристалле AgGaS₂ от ориентации плоскости поляризации световой волны на входе в образец.

82'

(к∥<001>) представлена на рис. 2. Точками обозначены экспериментальные данные; «сплошная линия представляет кривую, синтезированную из спектра фурье-разложе-ния экспериментальной зависимости с учетом нулевой, второй и четвертой угловых гармоник: именно эти спектральные компоненты определяют НОА в кристаллах класса 42m (см. формулу (1)). Установлено, что величины амплитуд нулевой, второй и четвертой гармоник соотносятся между собой, как 3:8:21. Таким образом, основной вклад в эффект нелинейного вращения плоскости поляризации света в тиогаллате серебра на длине волны λ=0,532 мкм вносит анизотропия нелинейного поглощения (N=4). Полученные данные позволяют рассчитать следующие нелинейные восприимчивости:

> Im { $\chi^{(3)}_{XXXX} - 3\chi^{(3)}_{XXYY}$ } = (0,7 ± 0,2) · 10⁻¹² CGSE, Re $\{\gamma_{XYXYZ}^{(3)}\} = (1,5 \pm 0,4) \cdot 10^{-18}$ CGSE, Re { $\gamma_{VVVVZ}^{(3)}$ = - (0,6 ± 0,4) · 10⁻¹⁹ CGSE.

Экспериментальная ошибка определяется преимущественно точностью измерения абсолютного значения интенсивности возбуждающего излучения. Заметим, что в отличие от кристаллов симметрии цинковой обманки ($\overline{4}3m$) [13] в AgGaS₂ ($\overline{4}2m$) имеется компонента самоиндуцированной НОА, обусловленная пространственной дисперсней нелинейности, не зависящая от орнентации кристалла (нулевая гармоника спектра). При больших плотностях энергии световой волны (порядка 1 ГВт/см²) нелинейное поглощение и НОА оказывают значительное влияние на условия распро-странения света, что необходимо учитывать при использовании AgGaS₂ в качестве рабочих элементов нелинейно-оптических устройств.

Авторы выражают благодарность Р. С. Задояну за консультации по технике поляризационных измерений.

СПИСОК ЛИТЕРАТУРЫ

[1] Bhar C., Smith R. C.//IEEE J. of Quant. Electron. 1974. QE-10. P. 546.
[2] Kupecek P. J., Chemla D. S., Schwarts C. A.//IEEE J. of Quant. Electron. 1974. QE-10. P. 540. [3] Hanna D. C., Rampal V. V., Smith R. C.//Opt. Comm. 1973. 8. P. 151-153. [4] Elsaesser T., Seilmeier A., Kaiser W.//Appl. Phys. Lett. 1984. 44. P. 383-385. [5] Hobden M. V.//Acta Cryst. 1968. A24. P. 676. [6] Yeh P.//Appl. Opt. 1982. 21. P. 4054-4058. [7] Miller A.//Phys. Rev. 1973. 88. P. 5902-5908. [8] Bлох О. Г., Царик А. В., Некрасова И. М.//Укр. физ. журн. 1983. 9. С. 1334-1338. [9] Cound V. M., Davies P. H., Hulme K. F., Robertson D. S.//J. Phys. C. 1970. 3. P. L83. [10]. Влох О. Г., Головей М. И., Царик А. В.//Укр. физ. журн. 1982. 4. С. 595-598. [11] Желудев Н. И., Петренко А. Д.//Кристаллография. 1984. 29. С. 1045-1053. [12] Задоян Р. С. Нелинейная поляризационная спектроскопия кристаллов: канд. дис. М. (МГУ), 1986. [13] Dubenskaya M. G., Zadoyan R. S., Zheludev N. I.//J. Opt. Soc. Am. 1985. 28. P. 1174-1178. 1985. 2B. P. 1174-1178.

Поступила в редакцию 26.06.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т., 28, № 2

УДК 621.378.3

ИССЛЕДОВАНИЕ ВРЕМЕНИ ЖИЗНИ ВЕРХНЕГО ЛАЗЕРНОГО УРОВНЯ Ar II 4p²D_{5/2} по спонтанной эмиссии на смежном переходе

Л. Е. Гринь, О. С. Зарослова, С. С. Карталева, В. В. Лебедева, А. И. Одинцов

(кафедра оптики и спектроскопии)

В работах [1, 2] для исследования времени жизни верхних лазерных уровней в плазме был использован метод, основанный на измерении мощности генерации лазера и спонтанной эмиссии на одном и том же переходе. Регистрация спонтанной эмиссии при этом производится через боковую стенку трубки. Такие измерения всегда сопровождаются значительными погрешностями, возникающими из-за поглощения излучения стенками трубки, неоднородности радиального распределения эмис-

83