(к∥<001>) представлена на рис. 2. Точками обозначены экспериментальные данные; «сплошная линия представляет кривую, синтезированную из спектра фурье-разложе-ния экспериментальной зависимости с учетом нулевой, второй и четвертой угловых гармоник: именно эти спектральные компоненты определяют НОА в кристаллах класса 42m (см. формулу (1)). Установлено, что величины амплитуд нулевой, второй и четвертой гармоник соотносятся между собой, как 3:8:21. Таким образом, основной вклад в эффект нелинейного вращения плоскости поляризации света в тиогаллате серебра на длине волны λ=0,532 мкм вносит анизотропия нелинейного поглощения (N=4). Полученные данные позволяют рассчитать следующие нелинейные восприимчивости:

> Im { $\chi^{(3)}_{XXXX} - 3\chi^{(3)}_{XXYY}$ } = (0,7 ± 0,2) · 10⁻¹² CGSE, Re $\{\gamma_{XYXYZ}^{(3)}\} = (1,5 \pm 0,4) \cdot 10^{-18}$ CGSE, Re { $\gamma_{VVVVZ}^{(3)}$ = - (0,6 ± 0,4) · 10⁻¹⁹ CGSE.

Экспериментальная ошибка определяется преимущественно точностью измерения абсолютного значения интенсивности возбуждающего излучения. Заметим, что в отличие от кристаллов симметрии цинковой обманки ($\overline{4}3m$) [13] в AgGaS₂ ($\overline{4}2m$) имеется компонента самоиндуцированной НОА, обусловленная пространственной дисперсней нелинейности, не зависящая от орнентации кристалла (нулевая гармоника спектра). При больших плотностях энергии световой волны (порядка 1 ГВт/см²) нелинейное поглощение и НОА оказывают значительное влияние на условия распро-странения света, что необходимо учитывать при использовании AgGaS₂ в качестве рабочих элементов нелинейно-оптических устройств.

Авторы выражают благодарность Р. С. Задояну за консультации по технике поляризационных измерений.

СПИСОК ЛИТЕРАТУРЫ

[1] Bhar C., Smith R. C.//IEEE J. of Quant. Electron. 1974. QE-10. P. 546.
[2] Kupecek P. J., Chemla D. S., Schwarts C. A.//IEEE J. of Quant. Electron. 1974. QE-10. P. 540. [3] Hanna D. C., Rampal V. V., Smith R. C.//Opt. Comm. 1973. 8. P. 151-153. [4] Elsaesser T., Seilmeier A., Kaiser W.//Appl. Phys. Lett. 1984. 44. P. 383-385. [5] Hobden M. V.//Acta Cryst. 1968. A24. P. 676. [6] Yeh P.//Appl. Opt. 1982. 21. P. 4054-4058. [7] Miller A.//Phys. Rev. 1973. 88. P. 5902-5908. [8] Bлох О. Г., Царик А. В., Некрасова И. М.//Укр. физ. журн. 1983. 9. С. 1334-1338. [9] Cound V. M., Davies P. H., Hulme K. F., Robertson D. S.//J. Phys. C. 1970. 3. P. L83. [10]. Влох О. Г., Головей М. И., Царик А. В.//Укр. физ. журн. 1982. 4. С. 595-598. [11] Желудев Н. И., Петренко А. Д.//Кристаллография. 1984. 29. С. 1045-1053. [12] Задоян Р. С. Нелинейная поляризационная спектроскопия кристаллов: канд. дис. М. (МГУ), 1986. [13] Dubenskaya M. G., Zadoyan R. S., Zheludev N. I.//J. Opt. Soc. Am. 1985. 28. P. 1174-1178. 1985. 2B. P. 1174-1178.

Поступила в редакцию 26.06.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т., 28, № 2

УДК 621.378.3

ИССЛЕДОВАНИЕ ВРЕМЕНИ ЖИЗНИ ВЕРХНЕГО ЛАЗЕРНОГО УРОВНЯ Ar II 4p²D_{5/2} по спонтанной эмиссии на смежном переходе

Л. Е. Гринь, О. С. Зарослова, С. С. Карталева, В. В. Лебедева, А. И. Одинцов

(кафедра оптики и спектроскопии)

В работах [1, 2] для исследования времени жизни верхних лазерных уровней в плазме был использован метод, основанный на измерении мощности генерации лазера и спонтанной эмиссии на одном и том же переходе. Регистрация спонтанной эмиссии при этом производится через боковую стенку трубки. Такие измерения всегда сопровождаются значительными погрешностями, возникающими из-за поглощения излучения стенками трубки, неоднородности радиального распределения эмис-

83

сии, а в ряде случаев из-за особенностей конструкции трубки они вообще невозможны.

Данные о времени жизни верхнего лазерного уровня можно получить, используя спонтанную эмиссию на переходе, смежном с лазерным. Различие длин волн генерирующего перехода (*m*—*n*) и смежного (*m*—*l*) позволяет разделить их с помощью спектрального прибора и измерить мощность генерации и спонтанное излучение в одном направлении — по оси трубки.

Заселенности общего верхнего уровня m при наличии генерации N_m и при ееотсутствии N^o_m связаны со скоростью накачки уровня S_m соотношениями

$$S_m = N_m \gamma_m + P, \quad S_m = N^0_m \gamma_m, \tag{1}$$

где γ_m — вероятность распада уровня, P — мощность генерации, снимаемая с единицы объема среды, выраженная числом квантов в секунду (предполагается, что скорость накачки верхнего уровня не меняется при включении генерации). Из (1) получаем

$$P = (N^0_m - N_m)\gamma_{m_*} \tag{2}$$

Величина $\Delta N = N_m^0 - N_m$, представляющая собой уменьшение заселенности уровня *m* при включении генерации, пропорциональна уменьшению интегральной интенсивности ΔI спонтанной линии смежного перехода *m*—*l*. (Предполагается, что на этомпереходе отсутствует реабсорбция излучения.) Поэтому вместо (2) можно написать

$$\gamma_m = cP/\Delta I, \tag{3}$$

где c — коэффициент, не зависящий от параметров плазмы. Измеряя одновременно величины P и ΔI , можно исследовать изменение скорости распада γ_m в зависимости от условий разряда. Отметим, что зависимость (3) получается и в рамках болеестрогого подхода, основанного на решении уравнений для матрицы плотности трехуровневой системы [3].

В эксперименте обычно регистрируется излучение из всего объема разрядной: трубки. В этом случае соотношение (3), в которое вместо P и ΔI подставляются интегральные по объему величины, дает значение γ_m , являющееся некоторым средним по сечению лазерного луча и длине трубки. В описываемом ниже эксперименте получаемые значения γ_m относятся к приосевой области разряда.

Нами экспериментально изучалось изменение формы контура спонтанной линин $\lambda = 422,8$ нм ($4p^2D_{5/2} - 4s^4P_{3/2}$) иона аргона под действием генерации на смежном переходе $\lambda = 488$ нм ($4p^2D_{5/2} - 4s^2P_{3/2}$) при различных параметрах плазмы лазера. Результаты экспериментов попутно позволили получить данные об изменении скорости распада верхнего уровня $4p^2D_{5/2}$ в зависимости от условий разряда.

Спонтанное излучение линии $\lambda = 422,8$ нм, выходящее из лазерной трубки (днаметр капилляра 2,5 мм, длина 45 см) через одно из зеркал резонатора, направлялосьна сканируемый давлением интерферометр Фабри—Перо с расстоянием между пластинами 1 см, далее на дифракционный монохроматор, фотоприемник и регистрировалось самописцем. Во время записи контура линии $\lambda = 422,8$ нм генерация $\lambda =$ 488,0 нм (мода TEM_{00}) периодически прерывалась механическим путем. Верхняя огибающая промодулированной части регистрограммы (рис. 1) представляет собой контур спонтанной линии в отсутствие генерации, нижняя огибающая — контур линии в присутствии генерации, а разница их определяет профиль провала, возникающего в контуре спонтанной линии 422,8 нм под действием генерации на переходе 488,0 нм в одночастотном (*a*) и многочастотном (*б*) режимах генерации, причем площадь провала пропорциональна величине ΔI^* . Исследования проводились при давлениях аргона от 0,07 до 1 мм рт. ст. и величине тока разряда от 10 до 18 А. В процессе экспериментов при всех давлениях мощность генерации *P* поддерживалась постоянной.

На рис. 2 показаны результаты, полученные по измерениям в многочастотном режиме. По оси абсцисс даны значения концентрации электронов, найденные по полуэмпирической формуле [4]

$$N_e = \frac{1}{R} \left[10^{14} p R - 3 \cdot 10^9 \left(j R - 160 \ V p R \right)^2 \right],$$

справедливой в области 15<jR<300 А/см и 0,03<pR<1 Тор.см. В этой формуле N_e в см⁻³, R — радиус разрядной трубки в см, p — давление в Тор, j — плотность тока разряда в А/см². Кривая на графике нормирована так, чтобы величина γ_m при N_e -0 совпала с величиной $\gamma_m^0 = 1 \cdot 10^3$ с⁻¹, соответствующей вероятности радиационного распада в отсутствие столкновений [5]. Из графика видно, что при увеличении

* Величина Δ/ может измеряться и путем регистрации интегральной интенсивности линии до и после включения генерации.

84

 N_e до $1\cdot10^{14}$ см⁻³ скорость распада уровня возрастает от $1\cdot10^8$ до $2.5\cdot10^8$ с⁻¹ и, следовательно, время жизни сокращается с 10 до 4 нс. Полученные цифры согласуются с данными [1, 2], а также с результатами работы [6], в которой время жизни уровня $4p^2D_{5/2}$ измерено по насыщению мощности генерации в синхронизованном режиме.

Рис. 1. Интенсивность спонтанного излучения линии $\lambda = 422,8$ нм при модуляции добротности резонатора до срыва генерации на смежном переходе $\lambda = 448,0$ нм в одночастотном (*a*) и многочастотном (*б*) режимах Таким образом, по нашим данным, при $N_e = 10^{14}$ см⁻³ столкновительные про-, цессы в плазме дают добавку к величине радиационной скорости распада уровня $4p^2D_{5/2}$, равную 1,5-10⁸ с⁻¹. Для сравнения этой величины с теоретическими оценками примем во внимание два самых сильных канала дезактивации уровня $4p^2D_{5/2}$ элек-

Рис. 2. График изменения скорости распада уровня $4p^2D_{5/2}$ с ростом концентрации электронов в плазме

тронами, а йменно $4p \rightarrow 4s$ и $4p \rightarrow 3d$ [7]. Используя теоретические сечения столкновительных электронных переходов $\langle \sigma_e v_e \rangle_{4p \rightarrow 4s} = 7,7 \cdot 10^{-7}$ см³/с и $\langle \sigma_e v_e \rangle_{4p \rightarrow 3d} = 2 \times 10^{-7}$ см³/с, приведенные в [7] для условий, близких к нашим, находим, что скорость дезактивации электронами при $N_e = 10^{14}$ см⁻³ составляет 10^8 с⁻¹. Из этого следует, что наблюдаемая в эксперименте зависимость скорости распада уровия $4p^2D_{5/2}$ от условий разряда может быть объяснена влиянием электронных соударений.

СПИСОК ЛИТЕРАТУРЫ

[1] Королев Ф. А. и др.//Журн. прикл. спектр. 1969. 11, № 2. С. 351—354. [2] Владимирова Н. М., Коньков И. Д., Ровинский Р. Е., Чебуркин Н. В.//ЖЭТФ. 1969. 57, № 11. С. 1506—1512. [3] Попов А. К. Введение в нелинейную спектроскопию. Новосибирск, 1983. [4] Овсепян Ю. И.//Тр. ФИАН. 1984. 145. С. 3—78. [5] Логинов А. В., Груздев П. Ф.//Опт. и спектр. 1978. 44, № 5. «С. 845—850. [6] Аполлонский А. А., Донин В. И., Тимофеев Т. Т., Шапиро Д. А.//Квант. электроника. 1986. 13, № 1. С. 123—127. [7] Китаева В. Ф., «Одинцов А. И., Соболев Н. Н.//УФН. 1969. 99, № 3. С. 361—416.

Поступила в редакцию 18.08.86