Таким образом, даже задание относительно невысокой точности определения $\xi^{(m)*}$ и последующее применение метода «уменьшения невязки» позволяет получить решение задачи с высокой точностью, сделав сравнительно небольшое число итераций.

СПИСОК ЛИТЕРАТУРЫ

[1] Prosser R. T.//J. Math. Phys. 1976. 17, N 10. P. 1775—1779. [2] Буров В. А., Горюнов А. А., Сасковец А. В.//Вестн. Моск. ун-та. Сер. 3, Физ. Астрон. 1982. 23, № 6. С. 87—89. [3] Байков С. В., Буров В. А., Горюнов А. А., Сасковец А. В.//Там же. С. 22—25.

Поступила в редакцию-06.08.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28. № 2

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 621.315.592

ЭФФЕКТ СТЕБЛЕРА — ВРОНСКОГО В ПЛЕНКАХ a-Si: H, ИМПЛАНТИРОВАННЫХ ИОНАМИ В И Р

И. А. Курова, И. П. Акимченко, К. Б. Читая

(кафедра физики полупроводников)

Эффект Стеблера—Вронского (ЭСВ) — уменьшение проводимости после освещения белым светом — был обнаружен в нелегированных пленках *a*-Si:H [1]. Впоследствии этот эффект исследовался на пленках с различной энергией активации темновой проводимости E_a , т. е. с различным расположением уровня Ферми F_0 в запрещенной зоне. Было найдено [2], что в зависимости от E_a проводимость может оставаться практически неизменной, уменьшаться или увеличиваться. Это связывалось с образованием фотоиндуцированных состояний донорного и акцепторного типа, расположенных соответственно ниже и выше середины запрещенной зоны. В [3] также предполагалось возникновение двух типов фотоиндуцированных центров донорного и акцепторного типа. ЭСВ наблюдался также в пленках *a*-Si:H, легированных, из газовой фазы [4]. Исследования методом ЭПР [5] показали, что после облучения концентрация нейтральных оборванных связей (до 10¹⁷ см⁻³).

В работе [6] для объяснения ЭСВ в нелегированных пленках a-Si:Н мы предположили, что после облучения белым светом образуются нейтральные оборванные связи, которые в зависимости от положения F₀ действуют как доноры или как акцепторы, сдвигая F₀ соответственно вверх или вниз по запрещенной зоне.

В настоящей работе мы исследовали ЭСВ в пленках *a*-Si:H с имплантированными ионами Р и В. Характеристики пленок представлены в таблице (N_B и N_P — полные концентрации имплантированных примесей).

Согласно нашим оценкам, совпадающим с данными работы [7], коэффициент эффективности легирования, т. е. отношение концентрации электрически активных атомов примеся к полной концентрации введенной примеся, для бора составляет 1/200, для фосфора 1/500. Следовательно, концентрации электрически активных примесей изменяются от 2,5-10¹⁶ до 2,5-10¹⁸ см⁻³ в пленках с бором и от 1·10¹⁶ до 1·10¹⁸ см⁻³. в. пленках с фосфором.

На рисунке показаны температурные зависимости темновой проводимости $\sigma_{\rm T}$ после отжига пленки при 170°С и после облучения светом от лампы накаливания в течение 30 мин (интенсивность освещения 2 Вт/см²). Видно, что при полной концентрации имплантированных атомов бора (N_B) и фосфора (N_P), не превышающей 5·10¹⁹ см⁻³, наблюдается ЭСВ: $\sigma_{\rm T}$ и ее энергия активации E_a после освещения изменяются. Значения E_a после отжига, E_a' после освещения и ΔF_0 — разница этих значений — приведены в таблице.

В результате освещения в пленках образуются нейтральные оборванные связи — состояние D^0 . Нейтральные оборванные связи могут отдать или принять электрон, образуя состояния D^+ или D^- . Локализованные состояния D^0 расположены в нижней половине запрещенной зоны, а состояния D^- — в верхней. Поэтому в зависимости от положения F_0 по отношению к D^0 и D^- фотоиндуцированные оборванные связи могут перезаряжаться.

В пленках р-типа с бором уровень F₀ находится в нижней половине запрещенной зоны, и если F₀ лежит ниже хотя бы части фотоиндуцированных состояний D⁰. то последние отдают электрон и F_0 движется вверх, E_a увеличивается и проводи-мость падает — наблюдается ЭСВ. Для иленок *p*-типа с бором (1, 2, 3) установле-но, что F_0 движется в области энергий от E_v +0,47 эВ до E_v +0,85 эВ. Для пленки 1 зиачение E_a =0,85 эВ может соответствовать разности E_c — F_0 , так как проводимость может быть электронной. Но в этой пленке E_c —0,85= E_v +0,85 эВ, так как значение

Температурные зависимости темновой проводимости образцов a-Si:H, импланированных ионами бора (a) и фосфора (б) (кружочки — после отжига, треугольники после освещения). Номера кривых соответствуют номерам образцов в таблице

 $E_c - E_v = 1,7$ эВ. В таблице приведены значения $E_g = E_c - E_v$, определенные экстраполяцией к нулю зависимости от $\hbar \omega$ величины ($\alpha \hbar \omega$)^{1/2}.

По смещению F_0 и плотности состояний N(E) в области смещения F_0 возможно D+ — концентрацию оборванных оценить связей, отдавших электрон: $D^+ =$ $F_0 + \Delta F_0$

N(E)dE. В указанной области смещения F₀ в пленках 1, 2, 3 N(E) ≈

		·				
Номер образца	N _B ; см ⁻³	N _P . см ⁻³	<i>Е_а,</i> эВ	, <i>Е</i> а, эВ	$ \Delta F_0 = E'_a - \\ -E_a, \ \text{3B} $. <i>Е_g,</i> эВ
1 2 3 4 5 6 7 8 9	$5.10^{18} \\ 1.10^{19} \\ 5.10^{19} \\ 2.10^{20} \\ 5.10^{20} \\$	$ \begin{array}{c}$	0,60 0,51 0,47 0,41 0,36 0,63 0,63 0,28 0,21	0,84 0,78 0,71 0,41 0,36 0,65 0,65 0,65 0,40 0,21	0,24 0,27 0,24 0,02 0,02 0,12 	1,70 1,68 1,68 1,65 1,64 1,70 1,67 1,65 1,65

≈ сопът и повышается при увеличении $N_{\rm B}$ [8]. Принимая для пленок 1, 2, 3 соответственно $N(E) = 2 \cdot 10^{17}$; $4 \cdot 10^{17}$ и $6 \cdot 10^{17}$ см⁻³ · эВ⁻¹ и $\Delta F_0 = 0,24$; 0,27 и 0,24 эВ, для $D^+ = N(E) \Delta F_0$ получаем значения 0,5 · 10¹⁷; $1,1 \cdot 10^{17}$ и 1,6 · 10¹⁷ см⁻³.

По максимальным значениям Еа после отжига можно определить положение D⁹

в запрещенной зоне: верхняя граница состояний лежит не ниже 0,85 эВ. Для пленок 4 и 5 мы не наблюдали ЭСВ: σ_т и E_a оставались практически не-измененными после освещения. Это может быть обусловлено рядом причин и требует отдельного исследования. Мало вероятно, что не образуются фотоиндуцированные со-стояния, поэтому можно предположить, что в таких пленках велик вклад прыжковой проводимости и могут быть значительными крупномасштабные флуктуации потенциа-

ла: В [9] также наблюдалось полное подавление ЭСВ в пленках с имплантированными ионами Ga и As при полной концентрации ≈10²¹ см⁻³.

В пленках *п*-типа уровень F_0 расположен в верхней половине запрещенной зоны. В зависимости от его положения относительно состояний D^- некоторая часть фотоиндуцированных оборванных связей D^0 захватывает электрон с других донороподобных состояний и наблюдается ЭСВ; F_0 движется вниз, E_a увеличивается и σ_{τ} уменьшается.

В пленке 9 с большой концентрацией фосфора, как и для пленок 4 и 5, мы не наблюдали ЭСВ. Это может быть обусловлено, в частности, упомянутыми выше особенностями сильно легированных пленок a-Si:H. Однако и в пленках 6, 7 и 8 изменение F₀ мало по сравнению с пленками 1, 2, 3. При этом, согласно [10, 11], уровень F₀ в пленках 6, 7 расположен вблизи максимума плотности состояния D⁻, а в пленке 8 выше его. При условии образования одинаковой концентрации фотоиндуцированных состояний D⁰ в пленках n- и p-типа с одинаковой концентрацией N_P и N_B перезарядка D^0 была бы значительной и величина ΔF_0 большой. Наблюдаемая мавеличина ΔF₀ в пленках *n*-типа может лая быть связана с меньшей KOHцентрацией фотоиндуцированных D^0 оборванных связей пленках в п-типа с Это уменьшение D⁰ имплантированным фосфором, свою очередь может в быть обусловлено меньшей концентрацией электрически активных фосатомов фора при одной и той же полной концентрации имплантированных примесей.

Авторы выражают благодарность В. Д. Дравину за имплантирование примесей в пленки.

СПИСОК ЛИТЕРАТУРЫ

[1] Staebler D. L., Wronski C. R.//Appl. Phys. Lett. 1977. **31**. P. 292—294. [2] Tanielian M. H., Goodman N. B., Fritzsche H.//J. de Phys. Suppl. 1981. **42**, N 10. P. C-4-375—C-4-378. [3] Vanier P. E.//Appl. Phys. Lett. 1982. **41**. P. 986. **43**, N 10. P. C-4-375—C-4-378. [3] Vanier P. E.//Appl. Phys. Lett. 1982. **41**. P. 986. **44**, N 10. P. C-4-375—C-4-378. [3] Vanier P. E.//Appl. Phys. Lett. 1982. **41**. P. 986. **42**, N 10. P. C-4-375—C-4-378. [3] Vanier P. E.//Appl. Phys. Lett. 1982. **41**. P. 986. **43**, Neurophys. J. 1982. **51**. P. 147—152. [6] KypoBa U. A., Opwohrt H. H., Hogpyruha B. Д.//Bестн. Моск. ун-та. Сер. 3, Физ. Астрон. 1985. **26**, № 5. С. 86— 88. [7] Le Comber P. G., Spear W. E.//J. Non-Cryst. Sol. 1980. **35**/36. P. 327—339. [8] Lang D. V., Cohen J. D., Harbison J. P.//Phys. Rev. 1982. **B25**. P. 5285— 5320. [9] Акимченко И. П. и др.//Письма В ЖЭТФ. 1981. **33**, № 9. С. 448—451. [10] Тапака К., Okushi H.//J. Non-Cryst. Sol. 1984. (66. P. 205—216. [11] Dersch H., Stuke J., Beichler J.//Phys. Stat. Sol. (b), 1981. 105. P. 265— 274.

Поступила в редакцию 29.12.85

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ, 1987. Т. 28, № 2

УДК 621.315.592:541

РЕЗОНАНСНЫЕ ЯВЛЕНИЯ ПРИ ВОЗДЕЙСТВИИ ИЗЛУЧЕНИЯ Со2-лазера на поверхность германия

А. В. Зотеев, В. Ф. Киселев

(кафедра общей физики для химического факультета)

Подавляющее число работ по десорбции, стимулированной ИК излучением лазеров, относится к случаю физической адсорбции молекул, имеющих резонансные с излучением колебательные моды (см. [1, 2]). В основном изучалась область полимолекулярной адсорбции, когда число адсорбционных слоев колебалось от 1—3 до 10³. Для максимально возможного снижения нагрева твердого тела в результате поглощения радиации использовались хорошо пропускающие диэлектрики (NaCl, KCl) или отражающие радиацию металлы (Ag, Cu). Даже в этой оптимальной ситуации вопрос о вкладе в резонансную десорбцию чисто термической десорбции является предметом оживленной дискуссии [1—3]. В таких системах превалирующим каналом диссипации энергии возбужденных молекул является передача ее соседним молекулам (канал M).

Нас интересовал противоположный случай — стимулированная СО₂-лазером десорбция изолированных молекул с поверхности полупроводника, когда канал M выключен и эффективна передача энергии возбуждения в твердое тело. В качестве «резонансных» молекул мы выбрали молекулы СО₂, в качестве полупроводника — монокристаллы германия ($\rho \simeq 20$ Ом см). Исследовались образцы с реальной поверхностью (Ge_p) и термически окисленные (Ge₀). Толщина оксидных слоев GeO₂ на них