Координационно-связанные молекулы (H₂O)_к в таких комплексах выполняют функции протонных центров, а весь комплекс играет роль центра медленного захвата дырок. Захват последних приводит к дополнительной протонизации молекулы (H₂O)_к [7]. При колебательном возбуждении таких комплексов кроме десорбции CO₂ возможно и протекание каталитической реакции:

CO_2+2 (H₂O) $_{\rm R}\rightarrow CH_4+2O_2$.

Промежуточной формой каталитического превращения CO₂ скорее всего является формиат-ион (HCOO)-.

С целью проверки возможности таких процессов мы исследовали методом эффекта поля поведение потенциала поверхности образцов Ge_p Y_s при адсорбции молекул CO₂. Оказалось, что Y_s сдвигается на -2kT/q в область отрицательных значений, что указывает на возникновение в граничной области Ge – GeO₂ примерно 5·10¹⁰ см⁻² отрицательно заряженных медленных состояний. При высоких интенсивностях ЛО (в области $T_{ep} \simeq 400 \div 450$ K) в масс-спектрах была обнаружена линия, соответствующая массовому числу M=16 (CH₄). Для более надежной идентификации этой массы мы провели измерения на образцах Ge_p, частично дейтерированных для замены в комллексах (H₂O)_к на (D₂O)_к. При этом в спектрах десорбции при ЛО было обнаружено выделение масс: CD₄, CHD₃, CH₂D₂, CH₃D. Общий выход этих молекул составил ~10¹⁰ мол см⁻², что близко к концентрации отрицательно заряженных медленных ловущек на поверхности (скорее всего формиат-ионов). Заметим, что аналогичный каталитический эффект мы наблюдали при возбуждении электронной подсистемы Si импульсами света в диапазсне 2—3 эВ [8].

Для протекания каталитических реакций необходимо присутствие на поверхности достаточно долгоживущих возбуждений адсорбционных комплексов [7]. На неупорядоченной поверхности, которой является поверхность Ge_p, обмен энергией между локальными колебаниями адсорбционных комплексов и объемными фононами затруднен [9]. Мы наблюдали возникновение долгоживущих возбуждений (10⁻⁵-10⁻⁶ с) в таких комплексах при захвате ими носителей заряда [7, 9].

СПИСОК ЛИТЕРАТУРЫ

[1] Chuang T. J. et al.//Surf. Sci. 1985. 158. P. 525—552. [2] Heidberg J. et al.//Ibid. 1985. 158. P. [4] Джиджоев М. С. et al.//Phys. Rev. 1983. шев К. К/ФТП. 1969. 3. С. 799—802. [7] Киселев В. Ф., Крылов О. В. Электронные явления в адсорщии и катализе. М., 1979. [8] Горчаков А. П., Зотеев А. В.//Кинетика и катализ. 1983. 24. С. 1277. [9] Кiselev V. F. et al.//Phys. Stat. Sol. (a). 1981. 66. P. 93—101.

Поступила в редакцию 11.08.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 2

УДК 538.22.539.28

ИЗМЕНЕНИЕ ХАРАКТЕРА ОБМЕННЫХ ВЗАИМОДЕЙСТВИЙ В СПЛАВАХ ГЕЙСЛЕРА ПРИ ЗАМЕЩЕНИИ Си НА Со

П. Н. Стеценко, В. В. Суриков, А. И. Ласкин

(кафедра общей физики для естественных факультетов)

Применимость разлачных моделей к описанию сверхтонких (СТ) и обменных взаимодействий в ферромагнитных гейслеровых сплавах (типа Cu₂MnAi, Co₂MnSi и т. д. [1]) дискутируется в литературе на протяжении двух десятилетий. Ряд авторов, применяя те или иные соображения о валентности элементов в сплаве (которая в рамках приближения свободных электронов определяет волновой вектор Ферми k_F н, следовательно, период осцилляций спиновой плотности в зоне проводимости), получают мало согласующиеся друг с другом результаты. Поэтому в [2] предложено рассматривать концентрацию электронов проводимости в качестве свободного параметра, определяемого из доступных экспериментальных результатов. Один из способов определяения k_F непосредственно из выражения для спиновых осициляций в модели РККИ и экспериментальных значений коэффициентов СТ взаимодействия для двух ближайших координационных сфер заключается в решении соответствующих трансцендентных уравнений [\$]. В данной работе аналогичный метод расчета с использованием модели РККИ (преасимптотическая форма [4]) и модели Кароли—Бландена [5] проводится с учетом экспериментальных значений степени спиновой поляризации в зоне проводимости, получаемой из анализа спектров ядерного спинового эха сплавов

Таблица 1

Локальные	магнитные	момент	ы ионов	Mn [1],	радиусы	1-й и 2-й
координ	ационных (сфери	соответс	твующие	коэффици	енты <i>b</i> ;

Сплав	μ _{<i>Mn</i>} , μ _Б	№ сферы	<i>R</i> . Å	b _i , кГс/µ _В
Cu ₂ MnA1	3,8	1 2	2,576 2,975	-11,7 - 6,0
Co ₂ MnA1	3,01	1 2	2,491 2,876	7,8 3,6

«Си₂MnAl и Со₂MnAl. Исходной информацией служат сдвиги сателлитных линий относительно главных пиков в спектрах (табл. 1), из которых, используя соотношение

$$b_i \mu_i = A_i P_i(R)$$

-(где b_i — вклад в сверхтонкое поле от 1µ_Б *i*-го атома, A_i — константа СТ взаимодействия для *i*-го типа ядер [6]), можно определить спиновую поляризацию P(R), создаваемую магнитоактивным ионом на расстояниях, равных радиусу ближайших координационных сфер.

В приближении РККИ использовалось следующее выражение для спиновой поляризации, создаваемой магнитным моментом µ в зоне проводимости на расстоянии R:

$$P(R) = -\frac{9\pi}{4} n^2 \frac{I_{sd}(i)}{E_F} \mu \frac{\cos\left[2k_F R + \eta(R)\right]}{(2k_F R)^3},$$
(2)

тде $I_{sd}(i)$ — обменный параметр для магнитного иона *i*-го типа, E_F — энергия Ферми, n — плотность электронов проводимости на один узел решетки, $\eta(R) = \pi R_{\min}^{min}/2R$ преасимптотический параметр [4] (R_{\min} — минимальное расстояние между атомами в сплаве).

Введение параметра $\eta(R)$ обусловлено необходимостью учета изменения фазы спиновых осцилляций в преасимптотической области.

Соответствующее выражение для спиновой поляризации в модели Кароли—Бландена при полностью заполненной *d*-подзоне со спином «вверх» (†) имеет вид

$$P(R) = \frac{5\Omega_0}{4\pi^2 R^3} \sin \Phi^{\downarrow} \cos(2k_F R + \Phi^{\downarrow}), \qquad (3)$$

где Ω₀ — средний атомный объем сплава, Ф⁴ — фазовый сдвиг.

Таблица 2

Значения волновых векторов Ферми и обменных интегралов в сплавах Гейслера (*R* — расстояние между ближайшими магнитоактивными соседями в данном сплаве)

Сплав	Модель	k _{F,} Å ⁻¹	R, Å	J(R) 10°, 9B
Cu ₂ MnA1	Кароли — Бландена	1,55	4,207	1,9
Co ₂ MnA1	ркки	1,51	2,491	13,6

В табл. 2 приведены рассчитанные нами значения k_F, обеспечивающие отрицательный знак для спиновой поляризации на расстояниях, равных радиусу первых двух координационных сфер, и положительный знак обменного интеграла для ближайших магнитоактивных соседей. С учетом полученных значений k_F можно оценить

манних обменных интегралов для ближайших координационных сфер в приближе-нии молекулярного поля (табл. 2). Проведенные нами оценки знаков обменных интегралов в сплаве Си₂MnAl пока-зывают, что модель РККИ не в состоянии объяснить ферромагнитную связь атомов марганца: как преасимптотическое приближение РККИ, так и асимптотическое дают отрицательный знак обменного интеграла $J_{Mn-Mn,3}$. Для Со₂МпА1 модель РККИ дает удовлетворительные результаты. Наоборот, модель Кароли-Бландена дает правильный знак обменного интеграла в сплаве Cu2MnAl и приводит к отрицательным температурам Кюри, лишенным физического смысла в сплаве Со2МпАІ. Заметим, что нами исследовался и случай не полностью заполненной d-подзоны со спином (†) для ионов Мп и Со.

Естественно заключить, что замещение меди на кобальт приводит к существенному изменению характера обменных взаимодействий в рассматриваемых сплавах: если в сплаве Cu₂MnAl, срдержащем лишь атомы марганца в качестве носителя локального магнитного момента, преобладает механизм d-резонансного рассеяния, то в сплаве с двумя типами магнитоактивных ионов (кобальт и марганец) основную роль, по-видимому, играет sd-обменное взаимодействие.

СПИСОК ЛИТЕРАТУРЫ

[1] Webster P. J.//Contemp. Phys. 1969. 10, N 6. P. 559—577. [2] Gör-lich E. A. et al.//Phys. Stat. Sol. (a). 1975. 30. P. 765—770. [3] Стеценко П. Н., Сурнков В. В.//ФТТ. 1980. 22, № 6. С. 1921—1925. [4] Сатрье11 I. А., Віап-din А.//J. of Magn. and Magn. Mat. 1975. 1. P. 1—10. [5] Сагоli В., Віап-din А.//J, Phys. Chem. Solids. 1966. 27. Р. 503—508. [6] Стеценко П. Н., Сури-ков В. В., Покатилсв В. С., Ласкин А. И.//ФТТ. 1983. 25, № 9. С. 2807— 2809.

> Поступила в редакцию 11.08.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28. № 2

УДК 537.622.5

ОСОБЕННОСТИ СПЕКТРА АНТИФЕРРОМАГНИТНОГО РЕЗОНАНСА **FPAHATA MnVG**

М. В. Леванидов, В. И. Соколов

(кафедра общей физики для естественных факультетов)

антиферромагнитных гранатов c 3d-понами Среди октаэдрическими NaCa2 \dot{M} n2V3O12 (MnVG) имеет наиболее высокую температуру Нееля: $T_N = 25,5$ К [1]. Согласно нейтронографическим данным [2], при 4,2 К магнитная структура этого граната представляет собой две кубические ферромагнитные подрешетки, вставленные антиферромагнитно (АФ) одна в другую. В данной работе на монокристаллах MnVG обнаружен и исследован антиферро-

магнитный резонанс (АФМР). Резонанс наблюдался в интервале температур 1.7-25 К в магнитных полях превышающих поле опрокидывания АФ подрешеток ($H_{c\phi}$). Параметры АФМР измерялись в диапазоне частот 27—45 ГГц с помощью радиоспектроскопа прямого усиления с проходным резонатором. На тех же кристаллах методом емкостного датчика [3] измерена статическая магнитострикция. Магнитное поле до 40 кЭ в экспериментах по изучению АФМР и магнитострикции создавалось сверхпроводящим магнитом поперечного поля, выполненным в геометрии катушек Гельмгольца.

На рис. 1 приведены угловые зависимости резонансного поля (*H*₀) MnVG в плоскости (110) при температурах 4,2 и 1,7 К на частоте 42 ГГц. Используя результаты анализа равновесных спиновых конфигураций кубического антиферромагнетика в поле $H > H_{c\phi}$ [4], мы установили, что наилучшим образом экспериментальная угловая зависимость H₀ в плоскости (110) MnVG описывается следующим соотношением:

$$(\omega/\gamma)^{2} = H_{0}^{2} + qH_{E}H_{A1}f_{1}(\theta) + H_{E}H_{A2}f_{2}(\theta) + \Delta^{2}.$$
(1)

Здесь ω — частота, γ — магнетомеханическое отношение, H_{A1} и H_{A2} — эффективные ноля, соответствующие первой (K_1) и второй (K_2) константам анизотропии, H_E эффективное поле обмена, q — численный коэффициент, Δ^2 — изотропная щель в слектре АФМР. Аналитический вид функций $f_1(\theta)$ и $f_2(\theta)$, характеризующих угловые