УДК 541.141.7

КОГЕРЕНТНЫЕ ЯВЛЕНИЯ В СИСТЕМЕ «ЗОНА—УРОВЕНЬ» ВО ФЛУКТУИРУЮЩЕМ ПОЛЕ

В. Ю. Финкельштейн, В. А. Намиот

(НИИЯФ)

Явление периодического изменения во времени населенностей в двухуровневой системе при мгновенном включении резонансного монохроматического поля (прецессия Раби) хорошо известно [1, 2]. В последние годы в ряде работ [3—7] рассматривался аналог этого явления для многоуровневой системы типа «зона—уровень». А именно: если основное состояние (ОС) связано резонансным монохроматическим полем E_0 с зоной из $N(N\gg 1)$ уровней, то изменение населенности ОС имеет характер «всплесков», когда на фоне почти полного опустошения ОС через приблизительно равные интервалы времени система на короткие периоды с большой, но постепенно убывающей вероятностью возвращается в ОС. Для этого требуется, чтобы в резонанс захватывалось несколько уровней $(\beta/2\pi\gg 1)$, они были приблизительно эквидистантны и имели примерно равные дипольные моменты:

$$\beta^{2} \left| \frac{d^{2}\widetilde{\alpha}(n)}{dn^{2}} \right| \leq 1, \quad \beta |d_{n}|^{-2} |d|d_{n}|^{2} |dn| \leq 1, \quad 1 \ll \beta \ll 2 (\pi N - \delta), \tag{1}$$

где $\beta = 2\pi^2 |f|^2$, $E_n = n\Delta + \tilde{\alpha}(n)$, $f = E_0 |d_n|/2\hbar\Delta$, $\delta \cdot \Delta/2\pi$ — отстройка несущей частоты поля от центра зоны.

Общим для всех указанных работ являлось то, что внешнее поле считалось детерминированным во времени. Между тем при описании квантовых процессов в поле излучения мощных лазеров нельзя игнорировать существенно немонохроматический характер такого излучения. Скорее его можно рассматривать, как шум с теми или иными статистическими свойствами [8]. Динамика двухуровневых систем (или сводящихся к ним) в полях с различной статистикой рассматривалась неоднократно [9]. В настоящей работе для многоуровневой системы «зона—уровень» будет определен характер зависимости когерентных явлений от типа и величины флуктуаций поля.

Для амплитуды населенности ОС a(t) при выполнении условий (1) и

$$\left| \frac{dE_0/d au}{E_0} \right| / 2\pi N$$
, $\frac{|d^2\Phi/d au^2|}{4\pi^2 N^2}$, $\frac{|d\Phi/d au|}{|\pi N - \delta|} \ll 1$,

где $E = E_0(\tau) \exp(-i\Phi(\tau))$, $\tau = \Delta \cdot t/2\pi$, справедливо уравнение [6]

$$\frac{da(\tau)}{d\tau} + \beta(\tau)(1+iS) a(\tau) = -4\pi^2 f^*(\tau) \sum_{k=1}^{\infty} \exp(ik\delta) f(\tau-k) a(\tau-k), \quad (2)$$

где $S = \frac{1}{\pi} \ln \frac{\pi N + \delta}{\pi N - \delta}$. Величину S в соответствии с [6] будем называть S-сдвигом. При $0 \leqslant \tau \leqslant 2$ и мгновенном включении поля из (2) получаем

$$= |a(\tau)|^2 = \exp\left[-2\int_0^{\tau} \beta d\tau_1\right] \left|1 - e^{i\delta}\int_1^{\tau} f^*(\tau_1) \cdot 4\pi^2 f(\tau_1 - 1) \right| \times \exp\left[(1 + iS)\int_0^{\tau_1} \beta(\tau') d\tau'\right] d\tau_1 \cdot \theta(\tau - 1) \right|^2, \tag{3}$$

В монохроматическом случае из (3) получаем

$$\rho_0(\tau) \simeq e^{-2\beta\tau} + 4\beta^2 \cdot (\tau - 1)^2 e^{-2\beta \cdot (\tau - 1)} \theta(\tau - 1), \ \theta(x) = 1$$
при $x > 0, \ \theta(x) = 0$ при $x \le 0$ (4)

и после экспоненциального распада ОС при $\tau=1+\beta^{-1}$ происходит «всплеск» населенности с максимумом $4e^{-2}$. Характер «всплеска» практически не зависит от δ и S.

Рассмотрим теперь поле с флуктуациями частоты (одномодовый лазер)

$$\Phi = \Phi_0 + \int_0^{\tau} \varphi(\tau_1) d\tau_1, \quad E_0 = \text{const},$$

 $\langle \rho_0 \rangle_1 = \exp(-2\beta\tau);$

 Φ_0 — величина, случайно распределенная в интервале $[0, 2\pi]$, ϕ — стационарный нормальный процесс:

$$\langle \varphi \rangle = 0$$
, $\langle \varphi(\tau_1) \varphi(\tau_2) \rangle = \Omega^2 \exp(-\alpha |\tau_1 - \tau_2|)$.

После усреднения (3) по реализациям ф получаем

0≤τ≤1,

$$\langle \rho_0 \rangle_2 \approx 8\beta^2 \exp\left(-2\beta (\tau - 1)\right) \int_0^{\tau - 1} (\tau - 1 - u) \exp\left\{-2F(u) + \varepsilon \exp\left(-\alpha (1 - u)\right) \times (1 - e^{-\alpha u})^2\right\} du; \quad 1 \leqslant \tau \leqslant 2;$$
(5)

$$F(u) = iu - \varepsilon + \varepsilon e^{-\alpha u}; \quad \varepsilon = \Omega^2/\alpha^2 = i/\alpha.$$

На первом рекурсивном периоде [0, 1] флуктуации частоты не проязляются, так как общее решение (3) зависит только от интенсивности поля. На втором рекурсивном периоде $\tau \in [1, 2]$ это уже не так — начинает играть роль коррелятор $\langle f^*(\tau)f(\tau-1)\rangle$. При $\alpha \ll \beta$, $(\tau-1)^{-1}$, а также при $\beta \ll \alpha \ll \Omega$ в области, существенной для интегрирования, в (5) можно считать $\alpha u \ll 1$, и

$$\langle \rho_0 \rangle_2 = \frac{4\beta^2}{\widetilde{\Omega}} \exp\left[-2\beta (\tau - 1)\right] \left[\sqrt{\pi} (\tau - 1) \operatorname{erf} \left(\widetilde{\Omega} (\tau - 1)\right) - \widetilde{\Omega}^{-1} \left(1 - \exp\left(-\widetilde{\Omega}^2 (\tau - 1)^2\right)\right) \right], \tag{6}$$

где $\widetilde{\Omega} = \Omega (1 - e^{-\alpha})^{1/2}$.

Если же $\alpha\gg\beta$, Ω , в (5) полагаем $\alpha u\gg1$. Тогда

$$\langle \rho_0 \rangle_2 = \frac{2\beta^2}{v^2} [2\gamma (\tau - 1) - 1 + e^{-2\gamma (\tau - 1)}] \exp(-2\beta (\tau - 1)).$$
 (7)

Из (6) и (7) видно, что флуктуации частоты приводят к существенному ослаблению «всплеска» по сравнению с (4), лишь когда $\langle \rho_{\rm b} \rangle_2^{\rm max} =$

$$=\frac{2\sqrt{\pi}}{6}$$
 при $\varepsilon\gg1$, $\Omega\gg\beta$ и $\langle\rho_{o}\rangle_{2}^{\max}=2\beta/e\gamma$ при $\varepsilon\ll1$, $\gamma\gg\beta$. Момент

достижения этого ослабленного максимума смещается к $\tau=1+(2\beta)$. Таким образом, четко выраженные когерентные явления должны наблюдаться, либо если ширина линии меньше β , либо при очень медлен-

ных флуктуациях частоты ($\Omega^2 \alpha \ll \beta^2$, $\alpha \ll 1$). Зависимость формы «всплеска» от интенсивности поля показана на рис. 1. Как и в монохроматическом случае, характер «всплеска» практически не зависит от S-сдвига и δ .

Проанализируем теперь случай амплитудных флуктуаций типа

Рис. 1. Зависимость формы «всплеска» от интенсивности внешнего поля при частотных флуктуациях: Ω = 10; S = 0,3; α = 10; δ = 0,5. Рядом с кривыми указана величина β

Рис. 2. Зависимость формы «всплеска» от обратного времени корреляции амплитудных флуктуаций (а — β_0 =5; δ =0,2; S=0,4; δ — β_0 =10; δ =1,2; S=0,25). Рядом с кривыми указана величина α_1

бесструктурного гауссового шума (многомодовый лазер). В (3) удается провести точное усреднение (см. Приложение). При $0 \ll \tau \ll 1$ получаем

$$\langle \rho_0 \rangle_1 = \frac{\exp(\alpha_1 \tau)}{\cosh(\theta_1 \tau) + \frac{\alpha_1 + 2\beta_0}{\theta_1} \sinh(\theta_1 \tau)}, \tag{8}$$

где
$$\theta_1 = (\alpha_1^2 + 4\beta_0 \alpha_1)^{1/2}$$
, $\langle f_1^* f_2 \rangle = \frac{\beta_0}{2\pi^2} e^{-\alpha_1 |\tau_1 - \tau_2|}$, $\langle f \rangle = 0$.

Если $\alpha_1 \ll 4\beta_0$ (узкополосный шум), то при $2\tau \sqrt{\beta_0 \alpha_1} \ll 1$

$$\langle \rho_0 \rangle_1 = (1 + 2\beta_0 \tau)^{-1}$$
.

Когда же $2\tau \sqrt{\overline{\rho_0 \alpha_1}} \gg 1$, характер эволюции изменяется:

$$\langle \rho_0 \rangle_1 = 2 \sqrt{\alpha_1/\beta_0} \exp(-2\tau \sqrt{\beta_0 \alpha_1}).$$

Если шум широкополосный: α₁≫4β₀, то

$$\langle \rho_0 \rangle_1 = \exp(-2\beta_0 \tau)$$
,

что совпадает с результатом для монохроматического поля, хотя мы и имеем дело с противоположным предельным случаем.

При $1\ll \tau\ll 2$ «всплеск» населенности ОС обусловлен интегральным членом I в (П2). Когда $\beta_0\gg 4\alpha_1(1+S^2)^{1/2}$ и $2(\tau-1)[\beta_0{}^2\alpha_1{}^2(1+S^2)]^{1/4}\ll 1$, то

$$I = \frac{2e^{-2\alpha_1}z^2}{(1+2z)(A_0 + S^2z^2(1-e^{-2\alpha_1}))A_0} + \frac{z\left[e^{-2\alpha_1} + 2(1+(1-e^{-2\alpha_1})z)^2\right]}{(1+S^2)(1-e^{-2\alpha_1})^{1/2}A_0^{5/2}} \times$$

$$\times \left\{ \ln \frac{(\sqrt{\overline{A_0}} + z\sqrt{1 - e^{-2\alpha_1}})^2}{1 + 2z} + 2S \operatorname{arctg} \frac{Sz\sqrt{1 - e^{-2\alpha_1}}}{\sqrt{\overline{A_0}}} \right\}, \tag{9}$$

где $z=\beta_0(\tau-1)$, $A_0=(1+z)^2-z^2\exp{(-2\alpha_1)}$. В частности, если $\alpha_1\max{[S^2,\ \beta_0(1+S^2)^{1/2}]}\ll 1$, из (9) получаем

$$\langle \rho_0 \rangle_2 = (1 + 2\beta_0 \tau)^{-1} - \frac{2ze^{i\delta}}{(1 + 2z + \beta_0(1+iS))^2} - \kappa. c. + \frac{8z^2}{(1 + 2z)^3}.$$

Максимум $\langle \rho_0 \rangle_2^{\text{max}}$ достигается при $z_{\text{m}} \approx 1$ и равен приблизительно 8/27. Как и в монохроматическом поле, форма «всплеска» слабо зависит от S и δ , однако его характер существенно иной. Действительно, когда $\alpha_1 \rightarrow 0$, монохроматический предел не достигается: поле f, являясь суммой большого числа независимых мод излучения с одинаковыми частотами, все равно остается случайной нормальной величиной, хотя и постоянной во времени.

При резонансе на краю зоны начинает проявляться зависимость $\langle \rho_0 \rangle_2$ от S-сдвига, а при $\alpha_1 S^2 > 1$ она приводит к смещению и уменьшению максимума «всплеска»: $z_{\rm M} = 1/3$ и

$$\langle \rho_0 \rangle_2^{\text{max}} = \frac{9\pi}{25S} \left(\frac{3}{10\alpha} \right)^{\frac{1}{2}}$$

Когда $\alpha_1 \geqslant 1$ (линия шире расстояния между уровнями зоны), происходит резкая перестройка формы «всплеска» из-за разрушения корреляций между амплитудами поля в моменты, отстоящие друг от друга на $2\pi/\Delta: \lambda_{-1}^1$, $\lambda_{-1}^2 \rightarrow 0$. Теперь

$$\langle \rho_0 \rangle_2 = \frac{2z}{(1+S^2)(1+z)^3} \left[\ln(1+2z) + 2S \arctan \frac{Sz}{1+z} \right].$$

При $S\ll 1$ основные изменения касаются формы «всплеска» (он сужается), а не положения и величины его максимума. Когда же $S\gg 1$ (резонанс на краю зоны), то $z_{\rm M}=1/2$ и $\langle \rho_0 \rangle_2^{\rm max}=\frac{8}{27}\frac{\pi}{S}$.

Наконец, если шум становится широконолосным: $\alpha_1 \gg \beta (1+S^2)^{1/2}$, то

$$\langle \rho_0 \rangle_2 = \frac{2\beta_0^2}{\alpha_1^2} \left[2\alpha_1 (\tau - 1) - 1 + e^{-2\alpha_1(\tau - 1)} \right] e^{-2\beta_0(\tau - 1)},$$

что совершенно аналогично закону изменения населенности ОС при широкополосных частотных флуктуациях (ср. с [7]). Таким образом, в шумовом гауссовом поле когерентные явления могут быть четко выражены, если ширина линии излучения меньше β_0 . Однако в отличие от случая флуктуаций частоты, если имеет место резонанс на краю зоны, когда $S^{-2} \leqslant \alpha_1 \leqslant \beta_0 S$, наблюдается сильная зависимость характера «всплеска» от величины S-сдвига, что проявляется в смещении $z_{\rm M}$ и уменьшении $\langle \rho_0 \rangle_2^{\rm max}$ уже при малых α_1 (рис. 2). Эти различия обусловлены тем, что в зависимости от типа флуктуаций меняется характер заселения уровней в зоне. Как показано в работе [6], в монохро-

матическом поле область возбуждения в зоне имеет ширину β и смещена относительно резонанса на величину βS . При частотных флуктуациях этот сдвиг не изменяется. При амплитудных флуктуациях и резонансе на краю зоны из-за наличия S-сдвига область возбуждения в зоне «размазывается», и уже при небольших α_1 нарушается временная когерентность между амплитудами населенности уровней, что и приводит к ослаблению когерентных явлений.

Результаты, полученные для частотных флуктуаций, можно обобщить на случай n-фотонного резонанса между ОС и зоной. Достаточ-

но провести замену

$$\beta \to \beta_n/((1+\alpha_0 S)^2 + \alpha_0^2), \ \Omega \to n\Omega, \ \varepsilon \to n^2 \varepsilon;$$

$$\beta_n = K |E_0|^{2n}; \ \alpha_0 = (|f_{n-1}|^2/2\Delta) (1/\Delta_{n-1} + 1/\Delta_{n+1}),$$

где K зависит от отстроек Δ_m и дипольных моментов $d_{m\,m-1}$ промежуточных нерезонансных уровней, $m=1,\ldots,n-1$. Эффективная ширина

линии возрастает при $\varepsilon \gg 1$ в n раз, при $\varepsilon \ll 1$ — в n^2 . Так как $K \sim \prod_{m} \Delta_m^{-2}$

и $|\Delta_m|\gg |f_{m\,m-1}|$, роль флуктуаций резко возрастает, и даже сравнительно узкая линия может так возбуждать систему, как широкая при однофотонном резонансе.

В заключение отметим, что для многоатомных молекул плотность колебательных уровней в районе 3-4-го возбужденного колебательного состояния достигает $10^3 \div 10^4$ см $^{-1}$. Если время включения поля порядка 10 нс, справедливо приближение мгновенного включения, и при изучении когерентных эффектов, возникающих при этом, необходимо учитывать флуктуации поля излучения.

Приложение...

Разобьем интервал $[0,\ \tau]$ на большое число M отрезков длиной $\Delta \tau = \tau/M$ так, что $(\alpha_1^2 + 4\beta_0\alpha_1)^{1/2}\Delta \tau \ll 1$. При $0 \leqslant \tau \leqslant 1$ имеем

$$\langle \rho_0 \rangle_1 = \left\langle \exp\left(-\beta_0 \Delta \tau \sum_{m=1}^M x_m^2\right) \right\rangle^2; \quad x_m = \operatorname{Re} f(m \Delta \tau) \cdot \pi \sqrt{2/\beta_0}.$$

Совместное распределение вероятностей для x_m гауссово. После простых преобразований получаем

$$\langle \rho_0 \rangle_1 = \exp(\alpha_1 \tau) \cdot 2\alpha_1 \Delta \tau \Lambda^{-1}; \quad \Lambda = \det \left[\Lambda_1 \right], \tag{\Pi1}$$

где

$$\Lambda_{1} = \begin{bmatrix} -\frac{a}{1} & -1 & 0 \\ -\frac{1}{1} & v_{M-2} & (\theta_{1}) & 0 \\ 0 & -\frac{1}{1} & a \end{bmatrix}; v_{M-2} & (\theta_{1}) = \begin{bmatrix} b & -1 & 0 \\ -1 & b & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & -\frac{1}{1} & b \end{bmatrix}$$

$$V_{M-2}(\theta_1) = \det(v_{M-2}(\theta_1)) = \operatorname{sh}(M-1)\theta_1 \cdot \operatorname{sh}^{-1}\theta_1$$

$$a = 1 + \alpha_1 \Delta \tau + (\theta_1^2 - \alpha_1^2/2) \Delta \tau^2 + \dots; \quad b = 2 \operatorname{ch} \theta_1.$$

Проводя разложение А по первой и последней строкам, имеем

$$\Lambda = a^{2}V_{M-2} - 2aV_{M-3} + V_{M-4} \approx V_{M}'' + \alpha_{1}\Delta\tau V_{M}' + \alpha_{1}^{2}\Delta\tau^{2}V_{M}.$$

Производная берется по M. В пределе $M \! \to \! \infty$, $\tau \! = \! \text{const}$, вычисляя Λ и подставляя его в ($\Pi 1$), получаем результат (8). Когда $1 \! \leqslant \! \tau \! \leqslant \! 2$, усреднение населенности ОС при использовании изложенного выше подхода также сводится к вычислению определителей, но более сложных, чем (П1). Требуется вычислить

$$\Lambda = \begin{bmatrix} -\frac{a & -1}{-1 & v_{\Delta n_{1}}(\theta_{1}) & -1} & & & & & \\ -\frac{1 & v_{\Delta n_{1}}(\theta_{1}) & -1}{-1 & v_{\Delta n_{1}}(\theta_{2}) & -1} & & & & \\ & & -1 & v_{n_{1}}(\alpha_{1}\Delta\tau) & -1 & & & & \\ & & & -1 & v_{\Delta n_{1}}(\theta_{2}) & -1 & & & \\ & & & & -1 & v_{n_{1}}(\theta_{1}) & -1 & \\ & & & & & -1 & a & \\ \end{bmatrix}$$

где
$$n_1=(\tau_2-1)/\Delta \tau$$
, $n_2=(\tau-\tau_1)/\Delta \tau$, $n_3=(\tau_2-\tau_1+1)/\Delta \tau$,
$$\Delta n=(\tau_1-\tau_2)/\Delta \tau$$
, $\theta_2=\theta_3^{\bullet}=(\alpha_1^2+2\beta_0\alpha_1(1+iS))^{1/2}$,

а также миноры $\Lambda: A(n_1, n_1 + \Delta n)$, $A(n_1 + n_3 + \Delta n, n_1 + n_3 + 2\Delta n)$, $A(n_1 + \Delta n, n_1 + 2\Delta n)$ + $n_3+2\Delta n$), $A(n_1,n_3+n_1+\Delta n)$. Разлагая эти определители по строкам на стыках миноров V, дифференцируя по n_1 , n_2 , n_3 , Δn до второго порядка включительно, получаем

$$\begin{split} \lambda_{-1}^{1,2} &= \frac{s_{5,4}}{\theta_1^2 \theta_{2,3}} \left(\theta_1 s_{1,2} c_{4,5} + \theta_{2,3} s_{4,5} c_{1,2} \right) \exp \left[-\alpha_1 \left(1 - \tau_1 + \tau_2 \right) \right], \\ \lambda_0^{1,2} &= \frac{s_{4,5}}{\theta_1} \left[c_{5,4} \left(\frac{c_{2,1} s_3}{\alpha_1} + \frac{c_3 s_{2,1}}{\theta_{3,2}} \right) + \frac{s_{5,4}}{\theta_1} \left(\frac{\theta_{3,2} s_3 s_{2,1}}{\alpha_1} + c_3 c_{1,2} \right) \right], \\ \Lambda &= \theta_1^2 \alpha_1^2 s_1 s_2 c_4 c_5 + \theta_1 \alpha_1 \theta_3 s_1 c_2 c_4 \left(\alpha_1 s_3 s_5 + \theta_1 c_3 c_5 \right) + \\ &+ \alpha_1 \theta_1 \theta_2 c_1 s_2 c_5 \left(\alpha_1 s_3 s_4 + \theta_1 c_3 c_4 \right) + \alpha_1 \theta_1 s_1 s_2 c_3 \left(\theta_2^2 s_4 c_5 + \theta_3^2 s_5 c_4 \right) + \\ &+ \theta_2 \theta_3 c_1 c_2 \left(\theta_1^2 s_3 c_4 c_5 + \theta_1 \alpha_1 c_3 \left(c_4 s_5 + s_4 c_5 \right) + \alpha_1^2 s_3 s_4 s_5 \right) + \\ &+ \theta_2^2 \theta_3 s_1 c_2 s_4 \left(\alpha_1 c_3 s_5 + \theta_1 s_3 c_5 \right) + \theta_3^2 \theta_2 c_1 s_2 s_5 \left(\alpha_1 c_3 s_4 + \theta_1 s_3 c_4 \right) + \theta_2^2 \theta_3^2 s_1 s_2 s_3 s_4 s_5, \\ \frac{s_{1,2}}{c_{1,2}} \right\} &= \left[1 \mp e^{-2\theta_2, 3 \left(\tau_1 - \tau_2 \right)} \right] \cdot \frac{1}{2}; \quad \frac{s_3}{c_3} \right\} = \frac{1}{2} \left[1 \mp e^{-2\alpha_1 \left(1 - \tau_2 + \tau_3 \right)} \right]; \\ \frac{s_4}{c_4} \right\} &= \frac{\alpha_1}{2} \left[1 \mp e^{-2\theta_1 \tau_2} \right] + \frac{\theta_1}{2} \left(1 \pm e^{-2\theta_1 \tau_2} \right); \\ \frac{s_5}{c_5} \right\} &= \frac{\alpha_1}{2} \left(1 \mp e^{-2\theta_1 \left(\tau - 1 - \tau_1 \right)} \right) + \frac{1}{2} \left(1 \pm e^{-2\theta_1 \left(\tau - 1 - \tau_1 \right)} \right). \end{split}$$

Нижние знаки относятся к c_i , верхние — к s_i .

В результате усреднения для любого β_0 из (3) и (П1) получаем

$$\langle \rho_0 \rangle_2 = \langle \rho_0 \rangle_1 - \frac{16\beta \alpha_1^2}{\theta_1^2} u \operatorname{Re} \left\{ \frac{\exp(i\delta + \alpha_1 \tau - 2\theta_2)}{D(D^2 - C^2 u^2)} \times \left[\frac{(BC - AD)(1 - u^2)}{1 + u^2 + 2C/D} + \frac{2(AC - BDu^2)}{y_1 - y_2} \ln \frac{(y_1 - 1)(u - y_2)}{(1 - y_2)(y_1 - u)} \right] \right\} + I, \quad (\Pi 2)$$

$$\begin{split} I &= 8\beta_0^2 u \exp\left[\alpha_1 \left(\tau - 1\right)\right] \int_0^{\tau - 1} \int_0^{\tau_1} \operatorname{Re}\left\{\left(\lambda_{-1}^1 \lambda_{-1}^2 + \lambda_0^1 \lambda_0^2\right) \left(\frac{2\alpha_1^2 \theta_1^2 \theta_2 \theta_3}{\Lambda}\right)^3 \times \right. \\ &\times \exp\left[-\left(2\theta_3 + 2\theta_2 - \theta_1 - \alpha_1\right) \left(\tau_1 - \tau_2\right)\right] \right\} d\tau_1 d\tau_2, \\ \text{The } u &= \exp\left[-\theta_1 \left(\tau - 1\right)\right], \\ A &= \frac{\theta_1^2 + \alpha_1^2}{4\theta_1} + \frac{\alpha_1}{2} + \frac{1}{4} \left(\theta_1 + \frac{\alpha_1^2}{\theta_1} - 2\alpha_1\right) u^2; \quad B = \frac{\theta_1^2 - \alpha_1^2}{2\theta_1}; \\ C &= \frac{1 + u^2}{2} \left[\alpha_1 \left(1 + e^{-2\theta_2}\right) + \frac{\left(\theta_1^2 + \alpha_1^2\right) \left(\theta_1^2 + \theta_2^2\right)}{4\theta_1^2 \theta_2} \left(1 - e^{-2\theta_2}\right)\right] + \\ &+ \frac{1 - u^2}{4\theta_1} \left[\left(\theta_1^2 + \alpha_1^2\right) \left(1 + e^{-2\theta_2}\right) + \frac{\alpha_1 \left(\theta_1^2 + \theta_2^2\right)}{\theta_2} \left(1 - e^{-2\theta_2}\right)\right]; \end{split}$$

 $D = \frac{(\theta_1^2 - \alpha_1^2) (\theta_2^2 - \theta_1^2)}{4\theta_0 \theta_1^2} (1 - e^{-2\theta_2}); \quad y_{1,2} = -\frac{C}{D} \pm \left(\frac{C^2}{D^2} - u^2\right)^{1/2}.$

СПИСОК ЛИТЕРАТУРЫ

[1] Ландау Л. Д., Лифшиц Е. М. Квантовая механика. 3-е изд. М., 1974. [2] Аллен Л., Эберли Дж. Оптический резонанс и двухуровневые атомы. М., 1978. [3] Макаров А. А., Платоненко В. Т., Тяхт В. В.//ЖЭТФ. 1978. 75. С. 2075—2091. [4] Евепју Ј. Н., Yен Ј. Ј., Bowden C. М.//J. Chem. Phys. 1982. 76. P. 5936—5946. [5] Galbraith H. W., Acherhalt J. R., Milloni P. W.//Ibid. 1983. 78. P. 790—802. [6] Финкельштейн В. Ю.//ЖЭТФ. 1985. 88. С. 1527—1546. [7] Кугоla Е., Евегју Ј. Н.//J. Chem. Phys. 1985. 82. P. 1841—1854. [8] Делоне Н. О., Коварский В. А., Масолов А. В., Перельман Н. Ф.///УФН. 1980. 131. С. 617—652. [9] Ахманов С. А., Дьяков Ю. Е., Чиркин А. С. Введение в статистическую радиофизику и оптику. М., 1981.

Поступила в редакцию 25.03.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 3

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 538.915; 546.66

РОЛЬ КОЛЛЕКТИВНЫХ ЭФФЕКТОВ В ФОРМИРОВАНИИ ВУФ СПЕКТРОВ РЕДКОЗЕМЕЛЬНЫХ ИОНОВ В КРИСТАЛЛАХ

Л. И. Девяткова, А. А. Дружинин, О. Н. Иванова, В. В. Михайлин, С. П. Чернов

(кафедра теоретической физики; кафедра квантовой радиофизики)

Как сообщалось в работе [1], в матрице BaY_2F_8 в спектрах 4f—5d переходов ионов Tm^{3+} , Er^{3+} и Ho^{3+} со стороны наиболее длинноволновой 5d-полосы наблюдалась еще одна полоса поглощения. Эта полоса появлялась при концентрации активаторных ионов свыше 5 ат. % и в случае иона Ho^{3+} оставалась хорошо разрешенной вплоть до 100 ат. %. Величина поглощения в дополнительной полосе росла быстрее, чем линейно, с увеличением концентрации активаторов, а интенсивность уменьшалась в ряду $Ho^{3+} \rightarrow Er^{3+} \rightarrow Tm^{3+}$.