УДК 621.375.8

ПАРАМЕТРИЧЕСКАЯ ГЕНЕРАЦИЯ РАЗНОСТНОЙ ЧАСТОТЫ В ПОЛЕ МНОГОМОДОВОЙ ВОЛНЫ НАКАЧКИ

В. А. Алешкевич, В. Я. Гайворонский, А. Н. Матвеев, В. А. Трофимов

(кафедра общей физики для физического факультета)

Со времени появления оптических квантовых генераторов накоплен чрезвычайно обширный теоретический и экспериментальный материал по проблеме преобразования оптического излучения, в частности параметрической генерации. Вместе с тем до сих пор остается практически неизученной проблема взаимодействия пространственно некогерентных световых пучков. Актуальность данной задачи обусловлена тем, что мощные лазеры, используемые в параметрических генераторах. и усилителях света, работают, как правило, в многомодовом режиме, и случайная пространственная модуляция световых волн может существенным образом повлиять на протекание процесса их параметрического взаимодействия.

В работе [1] развита приближенная теория параметрического усиления в заданном поле волны накачки, частично когерентном по пространству и времени. Были найдены выражения для инкрементов среднего поля, а также установлено, что некогерентность волны накачки слабо влияет на степень когерентности сигнальной волны, если длина корреляции волн накачки и сигнальной значительно меньше как длины усиления, так и длины корреляции холостой волны и волны накачки. Этот вывод нашел экспериментальное подтверждение в работе [2]. В работах [3, 4] на основании численного расчета рассматривался процесс генерации суммарной частоты и второй гармоники в поле многомодового лазерного излучения. При взаимодействии многомодового (w1) и одномодового (w2) излучения наибольший коэффициент преобразования в процессе ап-конверсии ($\omega_3 = \omega_1 + \omega_2$) наблюдается при ео-е взаимодействии, так как при этом типе взаимодействия меньше всего сказывается сбой фазы, вызванный многомодовостью излучения на чаctote w1.

В настоящей работе численно и аналитически проведено исследование процесса генерации волны разностной частоты в поле частично когерентного мощного лазерного пучка. Было проанализировано вырожденное параметрическое взаимодействие ($\omega_1 = \omega_3 - \omega_2$, где $\omega_1 = \omega_2$), которое в условиях фазового синхронизма и при учете дифракционных явлений описывается системой безразмерных уравнений [5]

$$\frac{\partial A_1}{\partial \tilde{z}} + iD_1 \frac{\partial^2 A_1}{\partial \tilde{x}^3} = -i\tilde{\gamma}_1 A_2^* A_3,$$

$$\frac{\partial A_2}{\partial \tilde{z}} + iD_2 \frac{\partial^2 A_2}{\partial \tilde{x}^2} = -i\tilde{\gamma}_2 A_1^* A_3,$$

$$\frac{\partial A_3}{\partial \tilde{z}} + iD_3 \frac{\partial^2 A_3}{\partial \tilde{x}^2} = -i\tilde{\gamma}_3 A_1 A_2.$$
(1)

Здесь $\tilde{z}=z/ka_{02}^2; k_2, a_{02}$ — волновое число и начальный радиус двумерного пучка холостой волны соответственно; $D_i=k_2/2k_i, \tilde{x}=x/a_{02}$. На входе в нелинейную среду задавались следующие распределения амплитуд, нормированных на корень из средней интенсивности пучка накачки на его оси:

$$A_{1}(\tilde{x}, 0) = 0, \ A_{2}(\tilde{x}, 0) = A_{02} \exp\{-\tilde{x}^{2}\}, \ A_{3}(\tilde{x}, 0) = A_{03}(\tilde{x}) \exp\{-\tilde{x}^{2}\},$$
(2)

где A_{02} — амплитуда холостой волны, $A_{03}(\tilde{x})$ — случайная функция с нормальным законом распределения, нулевым средним и корреляционной функцией

$$\langle A_{03}(\widetilde{x}_1) A_{03}^{\star}(\widetilde{x}_2) \rangle = \exp\{-(\widetilde{x}_1 - \widetilde{x}_2)^2 N_3/2\}$$

численно моделировалась на ЭВМ с помощью метода [6]. Средняя начальная интенсивность пучка накачки $\langle I_{03} \rangle$ входит в безразмерные коэффициенты нелинейной связи $\tilde{\gamma}_i = \gamma_i k_2 a_{02}^2 \sqrt{\langle I_{03} \rangle}$.

Анализ статистических закономерностей процесса параметрического усиления волны A₁ проводился на основе многократного численногорешения системы уравнений (1) с помощью спектрального метода, предложенного в [7], и последующего усреднения решений по пятидесяти случайным реализациям. Разброс значений полной мощности, являющейся инвариантом задачи, не превышал в численном эксперименте 3%.

Основные закономерности процесса параметрического усиления прослежены на примере сильного энергообмена взаимодействующих пучков в области $0 \ll z \ll 0.2k_2 a_{02}^2$, что соответствует типичным длинам нелинейных кристаллов. При сохранении начальной средней мощности пучка накачки варьировался его поперечный модовый состав, характеризуемый параметром $N_3 = (a_{03}/\rho_{03})^2$ $(a_{03}$ и ρ_{03} — начальные значения: радиусов пучка и когерептности волны A_3).

Прежде всего обратимся к анализу пространственной когерентности сигнальной волны, которую будем характеризовать модулем функции когерентности

$$\gamma_{A_{1}}(0, x, z) = \frac{\Gamma_{A_{1}}(0, x, z)}{V \Gamma_{A_{1}}(0, 0, z) \Gamma_{A_{1}}(x, x, z)},$$
(3)

$$\Gamma_{A_1}(x_1, x_2, z) = \langle A_1(x_1, z) A_1^*(x_2, z) \rangle,$$

где скобки означают усреднение по реализациям.

Из проведенных расчетов (рис. 1) можно сделать следующие выводы: 1) по мере распространения сигнальной волны ее пространственная когерентность убывает; 2) обогащение модового состава пучка накачки слабо влияет на радиус пространственной когерентности сигнальной волпы; 3) увеличение входной мощности накачки влечет за собой слабое сокращение радиуса пространственной когерентности усиливаемой волны.

Существенно, что в процессе распространения волны A_1 ее радиус пространственной когерентности достигает равновесного значения (рис. 2) — далее наступает режим самоканализации отдельных неоднородностей, пока не проявится их дифракционное расплывание. С ростом N_3 начало области самоканализации смещается ко входу в нелинейную среду.

Приведенные выше численные результаты и обобщающие их выводы имеют ясное физическое обоснование, если принять во внимание случайную пространственную модуляцию инкремента усиления сигнальной волны при одновременном учете дифракции зарождающихся в ней пространственных неоднородностей.

В поле гауссова пучка волны накачки инкремент параметрического усиления случайно модулирован по x и в пределах масштаба пространственной неоднородности ρ_{03} имеет вид $\Gamma(x) = \Gamma_0 (1 - x^2/\rho_{03}^2)$, где $\Gamma_0 = \sqrt{\gamma_1 \gamma_2 \langle I_{03} \rangle}$ – инкремент усиления в поле плоской волны. Вследствие случайной пространственной модуляции контура усиления взаимодей-

Рис. 1. Распределение степени когерентности $|\gamma_{A_1}|$ при $\tilde{z}=0.02$ (1) и 0.06 (2): $N_3=$ =4, $\tilde{\gamma_3}=10$ (a); $N_3=8$, $\tilde{\gamma_3}=10$ (б) и $N_3=8$, $\tilde{\gamma_3}=16$ (в)

Рис. 2. Распределение степени когерентности $|\gamma_{A_1}|$ вдоль пути распространения пучков на оси пучка (1) и при $\tilde{x} = 0.5$ (2), 1 (3), 1.5 (4): $N_3 = 4$, $\tilde{\gamma_3} = 10$ (α); $N_3 = 8$, $\tilde{\gamma_3} = 10$ (δ) и $N_3 = 8$, $\tilde{\gamma_3} = 16$ (β)

ствующие пучки на частотах ω₁ и ω₂ становятся пространственно некотерентными, причем поперечные размеры их неоднородностей испытывают сжатие ρ_{1,2} = ρ₀₃/ $V \overline{\Gamma_0 z}$, которому противодействует дифракция [5]. Таким образом, радиус пространственной когерентности сигнальной волны, постепенно убывая, достигает равновесного значения. Обобщая результаты работы [5] на случай вырожденного взаимо-

Обобщая результаты работы [5] на случай вырожденного взаимодействия частично когерентных пучков, можно считать, что если средняя интенсивность волны накачки $\langle I_{03} \rangle$ превышает критическую $I_{\rm KP} = I_0 \lambda_3^4 / \rho_{03}^4$ ($I_0 = c/(8\pi^7 \chi^2 n_1 n_2 n_3)$), то наступает режим параметрической лиффузии отдельных пространственных неоднородностей. Отметим, что условне $\langle I_{03} \rangle > I_{\rm KP}$ автоматически обеспечивает большие коэффициенты усиления на длине дифракционного расплывания пространственных неоднородностей пучка пакачки $R_{\rm H3} = k_3 \rho_{03}^2/2 \colon \Gamma_0 R_{\rm H3} > 1$.

На расстоянии $R_n = \Gamma_0 R_{\pi 3}^2 / 2 = \left(\sqrt{\tilde{\gamma}_1 \tilde{\gamma}_2} / 2N_3^2 \right) ka_{02}^2$ устанавливается равновесный радиус пространственной когерентности сигнальной волны

$$\rho_{1p} = \rho_{03} \left(I_{Kp} / \langle I_{03} \rangle \right)^{1/6}.$$
(4)

29

При N = 8 для $\tilde{\gamma}_1 = \tilde{\gamma}_2 = 5$ значение $R_n = 0.004k_2a_{02}^2$, что хорошо согласуется с результатами численного эксперимента (см. рис. 2.6).

Для оценки величины равновесного радиуса запишем (4) в безразмерном виде

$$\frac{\rho_{1p}}{a_{02}} = \left(\frac{I_{Kp}^0}{N_3 \langle I_{03} \rangle}\right)^{1/6}.$$
(5)

Здесь $I_{\kappa p}^{0} = I_{0} \lambda_{3}^{4} / a_{03}^{4}$ — критическая мощность пространственно когерентной волны накачки.

Из (5) непосредственно следует слабое уменьшение ρ_{1P} как при обогащении модового состава N_3 , так и при увеличении средней интенсивности пучка накачки $\langle I_{03} \rangle$. Так, отношение раднусов пространственной когерентности при переходе от $N_3=2$ к $N_3=8$ в численных экспериментах равно 0,81, а согласно (5) это отношение равно 0,79. При увеличении интенсивности $\langle I_{03} \rangle$ в 2,5 раза, чему соответствует увеличение коэффициентов $\overline{\gamma_i}$ в $\sqrt{2,5} \approx 1,6$ раза (см. рис. 2, в), аналогичное отношение в численных экспериментах равно 0,75, а по формуле (5) оно составляет 0,86.

В ходе численных экспериментов исследовались также энергетические характеристики сигнальной волны. Расчет показал, что профиль средней интенсивности с достаточной точностью становится гауссовым при $z > R_n$. Эффективная перекачка энергии в сигнальную волну происходит до тех пор, пока не наступает дифракционный сбой фаз взаимодействующих волн. Применяя результаты работы [8] к рассматриваемому случаю, для эффективной длины дифракционного сбоя фаз можно записать оценочное выражение

 $L_{c6} = \Gamma_0^{-1} \ln (\Gamma_0 k_3 \rho_{03}^2).$

Легко видеть, что с учетом (4) и при $\Gamma_0 R_{13} > 1$ выполняется условне $k_1 \rho_{1p}^2/2 \ll L_{c5} \ll k_3 \rho_{03}^2/2$. Это означает, что сбой фаз наступает лишь вследствие дифракционного расплывания неоднородностей сигнальной волны.

(6)

На рис. З отображено изменение погонных мощностей трех взаимодействующих пучков $P_i(\widetilde{z}) = \int_{-\infty}^{\infty} \langle |A_i(\widetilde{x}, \widetilde{z})|^2 \rangle d\widetilde{x}$, нормированных

Рис. 3. Распределение монностей взаимодействующих пучков (1, 2, 3 — соответственно кривые сигнальной волны, холостой н волны накачки): $N_3=0$, $P_0=5$ (a); $N_3=4$, $P_0=6,3$ (b); $N_3=8$, $P_{0}=6,2$ (сплошные кривые) и 15,5 (пунктир) (s)

на суммарную мощность $P_0 = P_1 + P_2 + P_3$ для разных значений N_3 . Как следует из (6),

 $L_{c6} = \Gamma_0^{-1} \ln (\Gamma_0 k_3 a_{03}^2 / N_3),$

и зависимость L_{c5} от N_3 носит слабый логарифмический характер, что и обнаруживается в численных экспериментах. Длина L_{c5} при возрастании N_3 от нуля вначале быстро уменьшается и в условиях численного эксперимента остается мало изменяющейся величиной: $L_{c6} \simeq 0.2k_2a_{02}^2$. При увеличении мощности (или Γ_0), как это видно из рис. 3, L_{c6} незпачительно уменьшается.

В целом КПД процесса на длине L_{сб} практически не зависит от начального модового состава пучка накачки.

В заключение авторы выражают благодарность А. П. Сухорукову за плодотворные обсуждения результатов данной работы.

СПИСОК ЛИТЕРАТУРЫ

[1] Пасманик Г. А., Фрейдман Г. И.//Квант. электроника. 1974. 1. С. 547—559. [2] Бабин А. А., Беляева Н. Н., Беляев Ю. Н., Фрейдман Г. И.//ЖЭТФ. 1976. 71, № 1. С. 97—110. [3], Копылов С. М.//Квант. электроника. 1981. 8. С. 1526—1531. [4] Дмитриев В. Г., Копылов С. М.//Квант. электроника. 1981. 8. С. 1526—1531. [4] Дмитриев В. Г., Копылов С. М.//Кам же. 1983. 10. С. 2008—2013. [5] Карамзин Ю. Н., Сухоруков А. П.//ЖЭТФ. 1975. 68. С. 834—846. [6] Алешкевич В. А., Лебедев С. С., Матвеев А. Н.//ЖЭТФ. 1982. 83. С. 1249—1255. [7] Карамзин Ю. Н., Цветкова И. Л. Препринт ИПМ № 115. М., 1979. [8] Карамзин Ю. Н., Сухоруков А. П.//Письма в ЖЭТФ. 1974. 20. С. 734—739.

Поступила в редакцию 11.04.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 4

АКУСТИКА

УДК 534.535

РАСПРОСТРАНЕНИЕ ЗВУКОВОГО ПУЧКА В АКУСТООПТИЧЕСКИХ КРИСТАЛЛАХ ПАРАТЕЛЛУРИТА И КАЛОМЕЛИ

М. А. Воронова, В. Н. Парыгин

(кафедра физики колебаний)

Обычно расчет характеристик акустооптических приборов проводится без учета дифракционной расходимости звукового пучка. Однако в реальных устройствах акустическая дифракция может играть существенную роль. Особенно сильно сказываются дифракционные искажения формы звукового поля в кристаллах, обладающих значительной анизотропией упругих свойств. Поэтому исследование формы звуковых пучков, создаваемых преобразователем в сильно анизотропных кристаллах, представляет большой интерес. Использование развитого к настоящему времени математического аппарата [1] позволит рассчитать дифракцию света на сложном звуковом пучке, форма которого учитывает дифракцию звука.

В данной работе рассматривается акустическое поле, создаваемое медленной сдвиговой волной в широко используемом в акустооптике кристалле парателлурита (TeO₂) вблизи кристаллографической оси [110] и аналогичной волной в каломели (Hg₂Cl₂), являющейся также перспективным для акустооптики материалом благодаря высокому коэффициенту акустооптического качества.