устойчивыми интенсивными вихрями. Полученный результат дает основание использовать для оценок интенсификации вихревых образований параметр k², связывающий минимум давления с максимумом скорости ветра.

СПИСОК ЛИТЕРАТУРЫ

[1] Тараканов Г. Г. Тропическая метеорология. Л., 1980. [2] Мамедов Э. С., Павлов Н. И. Тайфуны. Л., 1974. [3] Алексеев В. В., Александров А. А., Лаппо С. С./Изв. АН СССР, ФАО. 1969. 5, № 2. С. 204—207. [5] Риль Г. Климат н погода в тропиках. Л., 1984. [6] Радикевич В. М., Тараканов Г. Г.//Метеорология и гидрология. 1979. № 1. С. 41—45. [7] Deissler R. G.//J. Atm. Sci. 1977. 34, № 10. Р. 1502—1507. [8] МсВгіде J. Atm. Sci. рарег. 1979, № 308. [9] Мартыненко О. Г. и др. Препринт № 25 ИТМО АН БССР. Минск, 1984. [10] Сноу Г.//Интенсивные атмосферные вихри/Под ред. Л. Бенгссона и Дж. Лайтхилла. М., 1985. С. 298—312. [11] Ноескег W. Н.// //Month. Weath. Rev. 1960. 88. Р. 167—180.

Поступила в редакцию 07.04.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 4

АСТРОНОМИЯ

УДК 523.745:523.76

О СПЕКТРЕ МЕЛКОМАСШТАБНЫХ МАГНИТНЫХ СТРУКТУР НА СОЛНЦЕ

Н. Н. Контор

(НИИЯФ)

Введение. Представление о тонкоструктурности солнечного магнитного поля, т. е. о том, что оно состоит из отдельных волокон, возникло после того, как пространственное разрешение магнитографов стало приближаться к 1" (см., например, [1]). Затем это представление укрепилось [2] и в настоящее время является широко распространенным (см., например, [3–7]). Многочисленные мелкомасштабные образования на Солнце, обусловленные магнитными полями, стали рассматриваться как пучки, или кластеры [6], магнитных элементов [2]. Несмотря на сложность наблюдаемой картины, а в ряде случаев и противоречивость данных наблюдений, стала пробивать дорогу привлекательная своей простотой и общностью концепция единой тонкоструктурной магнитогидродинамической природы солнечных магнитных полей (см., например, [5]).

Если допустить, что в основе этой концепции лежит единый механизм генерации солнечных магнитных полей (наиболее вероятным нам представляется механизм «интерфейсного» динамо [6]), то естественным результатом «работы» этого механизма должно быть существование единого спектра локальных магнитных структур на Солнце (так мы будем называть упомянутые выше мелкомасштабные образования в солнечной атмосфере). С целью показать, что имеющиеся наблюдательные данные не противоречат представлению об едином спектре локальных магнитных структур (ЛМС), в настоящей работе анализируются результаты наблюдений различных видов ЛМС на Солнце.

Виды ЛМС на Солнце и их параметры. На Солнце (с помощью различных методик) обнаружено четыре вида ЛМС, а именно: активные области [8, с. 61] (см. также солнечные пятна [8, с. 79]); эфемер-

Магнитные эле- менты (МЭ)	Магнитные узлы	Эфемерные области (ЭО)	Активные области (АО)	Вид ЛМС
Узе,лки Спикулы Факе.льные точки МЭ	Матнитные узлы Микролоры	ЭО ЯРТ Поры	ДАО КАОЗ Солнечные пятна КАО2 КАО1	Наблюдаемые проявле- ния "ПМС
Хромосфера » Фотосфера	× \$	» Корона Фотосфера	Х ромосфера » Фотосфера Хромосфера »	Уровень наблю- дения ЛМС
3,4.10 ⁻² 2,6.10 ⁻³ 1,1.10 ⁻³ 1,0.10 ⁻¹	2,6.10-3 1,4.10-3	2,7.10 ⁻¹ 3,0.10 ⁻¹ 1,2.10 ⁻²	3,0.10# 7,0 2,0.10 ⁻¹ 2,0	Оцен <i>S_m</i> (е. п.)
5,2.10-3 5,2.10-3 6,9.10-3 3,5.10-3	$4, 2 \cdot 10^{-2}$ 1, 0 · 10 ⁻²	5,0.10 ⁻¹ 3,0.10 ⁻¹ 5,0.10 ⁻¹	6,0.10 ¹ 1,5.10 ¹ 5,0 3,0 1,0	ики средних знач Г (суг.)
	8,0.10 ⁻² 1,6.10 ⁻²	3,0.10-1 3,0.10-1 1,4.10-1	1,0.10 ² 	ений параметро Ф _т (ГВб)
2,9·10 ⁵ 6,4·10 ⁵ 2,2·10 ⁵	1,0.105	4,0.10 ² 1,9.10 ²		в совокупностей И _Н (кв. пов.) ⁻¹
	2,5.106	8,1.10 ² 5,5.10 ²	2,9.10 ⁻¹ 3,0.10 ⁻¹ 1,3 2,7	лмс
3,4.10-3 2,6.10-4 1,1.10-4 1,0.10-4	2,6.10- ³ 1,4.10 ⁻³	1,4.10 ⁻² 1,2.10 ⁻²	1,5 3,5 10-1 2,0 10-1 1,0 10-1 5,0 10-2	S* (е. п.)
	9,6.10*	5,8.104	1,3.10 ⁻¹ 8,6.10 ⁻¹ 	<i>dN</i> _p / <i>dS</i> * (сут. е. п. кв. пов.) ^{−1}

Таблица I

ные области [8, с. 63] (см. также поры [8, с. 78] и яркие рентгеновские точки [8, с. 57]); магнитные узлы [8, с. 76] (см. также микропоры [8, с. 78]); магнитные элементы [8, с. 29] (см. также факельные точки [8, с. 75], спикулы [8, с. 42] и узелки [8, с. 40]). Совокупности ЛМС каждого вида могут быть охарактеризованы оценками средних значений параметров, из которых мы будем рассматривать наблюдаемую площадь (S_m , в максимуме развития ЛМС), время жизни ЛМС (T), выносимый магнитный поток (Φ_m , в максимуме развития ЛМС), а также число наблюдаемых (N_{μ} или рождающихся (N_p) ЛМС. Кроме этого, будем учитывать временной ход числа наблюдаемых или рождающихся в единицу времени ЛМС (для каждого вида) в течение солнечного цикла.

В табл. 1 на основании данных и результатов, приведенных в [4, 8–17], собраны оценки средних значений перечисленных выше параметров совокупностей ЛМС для всех доступных анализу наблюдаемых проявлений ЛМС. Величина S_m измеряется в относительных единицах площади (1 е. п.=10⁻⁴ площади видимой полусферы Солнца, т. е. 3,04 · 10⁸ км²); T — в сутках; Φ_m — в теравеберах (10²⁰ мкс); $N_{\rm H}$ и $N_{\rm P}$ это соответственно число наблюдаемых и рождающихся в сутки ЛМС в «квадрате поверхности Солнца», ограниченном долготами *E*60 и *W*60 и широтами *N*60 и *S*60; его площадь равна 0,289 от площади поверхности Солнца; ДАО — это долгоживущие АО ($T \ge 27$ сут); КАО1, КАО2 и КАО3 — короткоживущие АО ($T \le 27$ сут); ЯРТ — это яркие рентгеновские точки в короне (подробнее см. [17]).

Поскольку наблюдательные данные показывают, что магнитные поля заметно «расходятся» по мере подъема в хромосферу и переходную область [18; 19; 8, с. 75], мы попытались «свести» все наблюдаемые площади ЛМС к уровню фотосферы, уменьшив для этого площади ЛМС, наблюдаемых в хромосфере, в 10 раз (в соответствии с данными [18; 19; 8, с. 75]), а для биполярных ЛМС (ЭО и АО) — в 20 раз (S*).

Плотность числа рождающихся ЛМС определялась из приближенного соотношения

$$\frac{dN_{\rm p}}{dS^*} = \frac{N_{\rm p}}{\Delta S} = \frac{N_{\rm H}}{T\Delta S},\tag{1}$$

где ΔS — оценка разброса площади ЛМС, принятая для ДАО равной 1,5S* (исходя из анализа распределения ДАО по S_m [20]), а для всех остальных ЛМС — равной S*.

Спектр ЛМС. По данным табл. 1 были построены зависимости $T(S^*)$; $\Phi_m(S^*)$; $N_{\rm H}(S^*)$ и $\frac{dN_{\rm P}}{dS^*}(S^*)$, т. е. спектр ЛМС по их размерам (см. рис. 1, 2). Совместный анализ рис. 1, 2 показывает, что все эти зависимости могут быть аппроксимированы степенными функциями с целыми показателями:

$$T = a_T S^*, \tag{2}$$

где $\lg a_r = 1,36 \pm 0,41;$

$$\Phi_m = a_{\Phi} S^*, \tag{3}$$

где $\lg a_{\Phi} = 1,51 \pm 0,32;$

$$N_{\rm H} = a_N / S^*, \tag{4}$$

где lg
$$a_N = 0.95 \pm 1.12;$$

83

$$\frac{dN_{\rm p}}{dS^*} = \frac{A_N}{(S^*)^3},$$

где $\lg A_N = -0.53 \pm 1.18$.

Как видно из рис. 1, 2, при определении вида зависимостей (2) и (3) было принято, что наблюдаемые значения параметров могут отличаться от среднего в 2 раза, а для зависимостей (4) и (5) — в 3 раза, поскольку надежность оценок параметров не одинакова (наилучшая надежность для зависимостей (2) и (3), наихудшая — для зависимости (5)), что, конечно, обусловлено низкой надежностью оценок числа наблюдаемых ЛМС (4), особенно для магнитных узлов, КАО1 и

Рис. 1. Зависимости $T(S^*)$ и $\Phi_m(S^*)$ по данным табл. 1. Прямоугольники показывают оценки разброса величин из табл. 1 (точки). Вертикальные штрихи показывают разброс значений параметра в (2) и (3). Размерность S^* см. в тексте

Рис. 2. Зависимость (4) числа наблюдаемых ЛМС (N_H) в «квадрате поверхности» (см. текст) от их «приведенной» площади S* (верхняя прямая). Спектр ЛМС (5) по их размерам (см. табл. 1) (нижняя прямая). Прямоугольники и вертикальные штрихи — то же, что и на рис. 1. Пунктир — распределение ДАО по S* для 1981 г.

(5)

КАО2. Вследствие этого оценка параметра в выражениях (2) и (3) справедлива с точностью до множителя 2–3, а в (4) и (5) — с точностью до множителя 10 и более. Учитывая большие погрешности в оценках параметров распределений ЛМС (особенно в соотношениях (4) и (5), приближенный характер соотношения (1), а также широкий диапазон изменения переменных (для S^* он составляет около 5 порядков, а для dN_p/dS^* — около 14 порядков), выражения (2) — (5) следует рассматривать как грубую аппроксимацию данных наблюдений, которая может служить лишь указанием на существование универсальных

84

связей между всеми наблюдаемыми видами ЛМС (см. введение). С этих позиций можно попытаться вывести некоторые следствия из соотношений (2) – (5). Так, соотношение (3) показывает, что средняя напряженность магнитного поля всех видов ЛМС одинакова и составляет $\overline{B} = (1,07^{+1,15}_{-0,55}) \cdot 10^3$ Гс, т. е. около 1 кГс. Этот результат можно объяснить как следствие того, что все ЛМС состоят из плотно упакованных магнитных элементов (см. табл. 1). Положив площадь одного МЭ равной $f_S = 10^{-4}$ е. п., получим

$$S^* = f_S n_f, \tag{6}$$

где n_l — число МЭ, составляющих данную ЛМС, и

$$\Phi_m = f_{\Phi} n_j, \tag{7}$$

где $f_{\Phi} = a_{\Phi} f_{S} = 3,24 \cdot 10^{9}$ Вб — магнитный поток, выносимый одним МЭ (ср. с табл. 1). Используя (6) и (7), можно записать (2) в виде

$$T = \frac{a_{\mathrm{T}}f_{\mathrm{S}}}{f_{\Phi}} \Phi_m = \frac{f_T}{f_{\Phi}} \Phi_m, \tag{8}$$

откуда следует, что время жизни ЛМС пропорционально выносимому ею магнитному потоку. Если пренебречь временем роста ЛМС по отношению ко времени ее распада и предположить, что распад ЛМС происходит с постоянной скоростью, что не противоречит наблюдениям [2, с. 94; 7, с. 221], получим

$$\left|\frac{d\Phi}{dt}\right| = \frac{\dot{f}_{\Phi}}{\dot{f}_{T}},\tag{9}$$

где f_T — среднее время жизни магнитного элемента, равное 3,3 мин. Сравнивая (9) с результатом диффузионного приближения для распада солнечных пятен [5, с. 399], получим $\tilde{\eta}=f_S/(4\pi f_T)=1,22\cdot 10^7$ м²/с, что дает разумное значение коэффициента турбулентной магнитной диффузии $\tilde{\eta}$. Таким образом, распад ЛМС происходит так, как будто она теряет в течение каждого интервала времени f_T по одному из составляющих ее магнитных элементов.

Из вида зависимости (4) следует, что мощность генерации солнечного магнитного поля (в течение промежутков времени около 1 года) приблизительно постоянна. Действительно, общее число магнитных элементов N_f , составляющее все ЛМС с площадью S^* , оказывается одинаковым для любой $S^*=f_Sn_f$:

$$N_f = N_H n_f = a_N / f_S = \text{const.}$$

Тогда на один свободный магнитный элемент в среднем приходится площадь $S_0 = [S]f_S/a_N$, где [S] — площадь «квадрата поверхности Солица» (см. выше). При образовании ЛМС с площадью S* магнитные элементы как бы собираются с площади S_0n_f , откуда следует, что наблюдаемое число таких ЛМС

$$N_{\rm H} = \frac{[S]}{S_0 n_f} = \frac{a_N}{S^*}.$$

(см. (4)). Отсюда с учетом (1) сразу получаем выражение (5) для спектра ЛМС, где $A_N = a_N/a_T$.

Выводы. Все данные по различным видам ЛМС, собранные в табл. 1, могут быть грубо аппроксимированы выражениями (2)-(5),

которые рассматриваются нами как указание на существование единого механизма генерации солнечных магнитных полей.

С помощью этих выражений, исходя из концепции единой тонкоструктурной магнитогидродинамической природы солнечных магнитных полей, можно оценить параметры магнитного элемента (см. соотношения (3), (6)-(8) и табл. 2); описать процесс распада ЛМС (см. со-

Таблица 2

	Обозначе- ние пара- метра		Оценка величины параметра		
Параметр		Единица измерения	минималь- ная	средняя	максн- мальная
Площадь поперечного сечения	f_s	10 ⁴ км ²	1,5	3,0	4,5
Время жизни	f_T	мин	1,3	3,3	8,5
Магнитный поток	ĺδ	10 ¹⁷ мкс	1,6	3,2	6,8
Магнитная индукция	B _f	10 ³ Гс	0,51	1,1	2,2

отношение (9)); установить, что механизм генерации солнечного магнитного поля в конвективной зоне, по-видимому, характеризуется приблизительно постоянной мощностью, т. е. приблизительно постоянным числом генерируемых магнитных элементов, из которых образуется совокупность ЛМС с площадью S^* (в течение промежутков времени около 1 года).

Основной вывод состоит в том, что все виды ЛМС на Солнце, повидимому, образуют единый степенной спектр с плотностью

$$\frac{dN_{\rm p}}{dn_f} \approx \frac{A_f}{n_f^3},\tag{10}$$

где $A_f = \frac{3a_N}{a_T f_S^2} = 10^8$ магнитных структур, рождающихся в сутки на по-

верхности Солнца в единичном интервале числа магнитных элементов.

СПИСОК ЛИТЕРАТУРЫ

[1] Северный А. Б.//Астрон. журн. 1965. 42, № 2. С. 217—232. [2] Стенфло Дж. О.//Проблемы солнечной активности/Под ред. В. Бумбы и И. Клечека. М., 1979. С. 75—120. [3] Паркер Е. Космические магнитные поля. М., 1982. [4] Тве Sun as a Star/Ed. S. Jordan NASA SP-450, 1981. [5] Прист Э. Р. Солнечная магнитогидродинамика. М., 1985. [6] Spruit H. C., Roberts B.//Nature. 1983. 304, N 5925. Р. 401—406. [7] Обридко В. Н. Солнечные пятна и комплексы активности. М., 1985. [8] Солнечная и солнечно-земная физика/Под ред. А. Бруцека, Ш. Дюрана. М., 1980. [9] Solar-Geophys. Data (Regions of Solar Activity). U. S. Department of Commerce (Boulder Col., USA, 80303). 1969—1981. Р. 1. [10] Нагvеу К. L., Нагvey L. W., Martin S. F.//Solar. Phys. 1975. 40. Р. 87—102. [11] Martin S. F., Harvey K. L.//Ibid. 1979. 64. Р. 93—108. [12] Roussel-Dupre R. et al.//Astrophys. J. 1984. 278. Р. 428—440. [13] Golub L., Krieger A. S., Vaiana G. S.// //Solar. Phys. 1976. 49. Р. 79—90. [14] Golub L., Davis J. M., Krieger A. S.// //Astrophys. J. 1979. 229. Р. L145—L150. [15] Davis J. M.//Solar. Phys. 1983. 88. P. 337—342. [16] Golub L., Rosner R., Vaiana G. S., Weiss N. O.//Astrophys. J. 1981. 243. Р. 309—316. [17] Контор Н. Н. Ден. ВИНИТИ № 5865-83. М., 1983. [18] Simon G. W., Noyes R. W.//Solar Magnetic Fields. IAU Symp. N 43, Dordrecht, Reidel, 1971. Р. 663—666. [19] Frazier E. N., Stenfio J. O.//Solar Phys. 1972. 27. Р. 330—346. [20] Контор Н. Н., Любимов Г. П., Хотиловская Т. Г., Заборова Е. П.//Изв. АН СССР, сер. физ. 1976. 40, № 3. С. 478—483.

Поступила в редакцию 20.03.86