Сравнение с результатами работ [2—4, 8] показывает, что КСМ в лазере на красителе в отличие от лазеров на других активных средах (твердотельных [2—4] или газовых [8]) возможна лишь в специальных резонаторах, обеспечивающих разрежение спектра генерации. Отличительной особенностью по сравнению с твердотельными лазерами является малое время установления режима КСМ. Несмотря на большие различия в параметрах активных сред (ширина и характер линии люминесценции, времена релаксации, механизм возникновения инверсной населенности и пр.), границы области существования режима КСМ близки по параметру v.

Таким образом, рассмотренный способ синхронизации мод отличается простотой реализации и позволяет получать СКИ в лазерах на красителях при перестройке частоты излучения в достаточно широком диапазоне.

СПИСОК ЛИТЕРАТУРЫ

[1] Качмарек Ф. Введение в физику лазеров. М., 1981. [2] Кравцов Н. В., Сидоров В. А., Сусов А. М.//Письма в ЖТФ. 1977. 3, № 3. С. 126—129. [3] Кравцов Н. В., Сидоров В. А., Сусов А. М.//Вестн. Моск. ун-та. Сер. 3, Физ. Астрон. 1980. 21, № 1. С. 82—85. [4] Корниенко Л. С., Кравцов Н. В., Ларионцев Е. Г., Сидоров В. А.//Письма в ЖТФ. 1980. 6, № 12. С. 733—736. [5] Корниенко Л. С., Ларионов Е. Г., Сидоров В. А.//Квант. электроника. 1980. 7, № 6. С. 1213—1218. [6] Тоуокаtsи Міуаһіtа//Зарап J. Аррі. Phys. 1984. 23, № 2. Р. 197—199. [7] Справочник по лазерам/Под ред. А. М. Прохорова. М., 1978. Т. 2. [8] Ватbini А., Вигlатассhi Р.//J. Аррі. Phys. 1968. 39, N 10. Р. 4864—4865.

Поступила в редакцию - 24.10.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА, АСТРОНОМИЯ. 1987. Т. 28, № 4

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 537.622.5

МАГНИТНЫЕ И МЕССБАУЭРОВСКИЕ ИССЛЕДОВАНИЯ НОВЫХ АНТИФЕРРОМАГНИТНЫХ СОЕДИНЕНИЙ RFeGe₂O₇(R=La-Gd)

Б. В. Милль, З. А. Казей, С. И. Рейман, С. А. Тамазян, Ф. Д. Хамдамов, Л. Ю. Быкова

(кафедра общей физики для естественных факультетов)

В синтезированных соединениях LaAlGe₂O₇, NdAlGe₂O₇ и NdGaGe₂O₇ (пр. гр. $P2_1/m$, Z=4) [1] редкоземельные (P3) ионы занимают позиции с координационным числом (к.ч.) 9 (трехшапочные тригональные призмы), ионы Al³⁺ и Ga³⁺ находятся в тригональных бипирамидах (к.ч. 5), ионы Ge⁴⁺ — в кислородных тетраэдрах, объединенных в диортогруппы [Ge₂O₇]. Наши исследования показали, что такие германаты образуются с P3 ионами от La³⁺ д Dy³⁺. В данной работе сообщается о получении аналогичных соединений с Fe³⁺ — RFeGe₂O₇(R=La — Gd) и изучении их магнетизма с помощью измерения магнитных и упругих свойств и техники ЯГР.

Рентгеновски однофазные образцы для исследований приготовлены твердофазным синтезом из оксидов при 1200°С. Параметры моноклинной ячейки соединений и рассчитанные плотности приведены в таблице. Образцы для мёссбауэровских исследований обогащены ⁵⁷Fe до 10%.

При комнатной температуре мёссбауэровские спектры ⁵⁷Fe для всех RFeGe₂O₇ имеют форму квадрупольного дублета (рис. 1, *a*) с близкими параметрами. Изомерный сдвиг относительно нитропруссида натрия $\delta = (0.57 \pm 0.01)$ мм/с, квадрупольное расщепление Δ монотонно увеличивается от (1.03 ± 0.02) мм/с для LaFeGe₂O₇ до $(1.19 \pm \pm 0.02)$ мм/с для GdFeGe₂O₇. Величина изомерного сдвига соответствует Fe³⁺ в оксидных соединениях и лежит между значениями δ для Fe³⁺ в октаэдрических и тетраэдрических позициях ферритов-гранатов [2]. Вольшая велячина Δ свидетельствует о значительном градиенте электрического поля в месте нахождения ядра ⁵⁷Fe, сравнимом с градиентом поля для тетраэдрических позиций в ферритах-гранатах.

В области T = 7-9 К в спектрах ⁵⁷Fe в соединениях RFeGe₂O₇(R=La, Sm, Eu, Gd) появляется сверхтонкая (CT) структура в виде зеемановского секстета, свиде-

Соединение	Параметры элементарной ячейки								
	$a, \stackrel{\circ}{A}$ (±0,01)	b. Å (±0,01)	c, Å (±0,01)	β, ° (±0,2)	d _x , _г/см³	Т _N , Қ (±0,5)	$-\theta_{\mathbf{p}}, \mathbf{K}$ (± 1)	μ _{эфф} , μ _Β	В _{ст} , кЭ (±10)
LaFeGe ₂ O ₇ PrFeGe ₂ O ₇ NdFeGe ₂ O ₇ SmFeGe ₂ O ₇ EuFeGe ₂ O ₇ GdFeGe ₂ O ₇	7,32 7,27 7,22 7,18 7,16 7,14	6,666,626,606,596,586,57	13,07 13,03 12,96 12,93 12,88 12,81	117,4 117,4 117,3 117,3 117,4 117,4	5,31 5,41 5,53 5,66 5,73 5,85	7 4,5 4,5 6,5 6,5 8,5	37 24 24 45 46 10	6,0 6,8 6,7 6,6 6,8 9,3	392 465 380 497

Рентгенографические и магнитные характеристики соединений RFeGe₂O₇

тельствующая о магнитном упорядочении. Для соединений с La, Sm, Eu линии секстета сильно уширены при 5 K (рис. 1, θ), что указывает на релаксацию магнитиого момента ⁵⁷Fe³⁺, и только в случае GdFeGe₂O₇ спектры при $T \ll 8$ K представляют собой зеемановский секстет с узкими линиями (рис. 1, θ). Причины такого различия в настоящее время не ясны. Для PrFeGe₂O₇ и NdFeGe₂O₇ температура магнитного упорядочения $T_N \ll 5$ K, так как при 5 K спектр ⁵⁷Fe³⁺ сохраняет дублетную форму (у PrFeGe₂O₇ линии несколько уширены).

(у Псосо липин посколко ушрения). Из мёссбауэровских спектров RFeGe₂O₇(R=La, Sm, Eu, Gd) при 5 К определены изомерный сдвиг δ , квадрупольное расщепление Δ и величина CT магнитного поля $B_{c\tau}$ (см. таблицу). Для всех соединений $\delta = (0,70\pm0,04)$ мм/с. Величина $B_{c\tau}$ при 5 К для GdFeGe₂O₇ находится между

значениями Вст для Fe³⁺ в октаэдрическом и тетраэдрическом окружениях в ферритах-гранатах [2]. Пониженное значение (Вст) для остальных соединений, по-видимому, объясняется релаксационными эффектами, так как из за флуктуаций магнитного момента вблизи Т л величина Вст уменьшается за счет усреднения по направлению. Эти же эффекты приводят к уширению резонансных линий. Величина ∆ при 5 К надежно определяется только для GbFeGe₂O₇; $\Delta = (0.41 \pm 0.05)$ мм/с, что почти втрое меньше, чем при 293 К. Так как величина градиента электрического поля практически не зависит от температуры, уменьшение с отклонением главной оси тен-∆ связано зора градиента поля от направления СТ магнитного поля. В приближении аксиальной симметрии с учетом множителя (3cos²0-1)/2

Рис. 1. Мёссбауэровские спектры ⁵⁷Fе в GdFeGe₂O₇ при 293 (а) и 5 K (б) и LaFeGe₂O₇ при 5 K (в). Точки — эксперимент, сплошная кривая — аппроксимация МНК линиями лоренцевой формы

в гамильтоннане CT взаимодействия можно оценить угол между ними: 0≅48°.

С целью выяснения характера магнитного упорядочения и оценки величин обменных взаимодействий Fe³⁺ — Fe³⁺ — Fe³⁺ — R³⁺ и R³⁺ — R³⁺ в RFeGe₂O₇ исследованы магнитные свойства этих соединений. Магнитную восприимчивость и намагниченность измеряли на вибромагнитометре со сверхпроводящим соленоидом в полях до 60 кЭ.

Намагниченность LaFeGe₂O₇, содержащего один сорт магнитных ионов Fe³⁺, линейно зависит от *H* при всех исследованных температурах, а магнитный момент на молекулу при 4,2 К в поле 60 кЭ составляет ~1,2 µ, что свидетельствует о существовании антиферромагнитных взаимодействий Fe³⁺ — Fe³⁺. Температурная зависимость обратной молярной воспринмчивости $\chi_{\rm M}^{-1}$ для LaFeGe₂O₇, как видно из рис. 2, а, обнаруживает небольшой излом при $T_N \cong 7$ К. При $T > T_N$ воспринмчивость следует закону Кюри—Вейса с парамагнитной температурой $\theta_{\rho} = -37$ К и эффективным магнитным моментом $\mu_{\rm D} \Phi_{\Phi} = 6, 0 \mu_{\rm E}$. Это соответствует моменту Fe³⁺: $\mu_{\rm acob}^{\rm teop} = g\mu^{\rm D}$

 $\sqrt{S(S+1)} = 5,92 \,\mu_{\rm B}$. Соединение GdGaGe₂O₇, содержащее только магнитные ионы Gd³⁺, остается парамагнитным вплоть до 4,2 К. Магнитная воспринмчивость этого образца при 4,2 К на полтора порядка больше и следует закону Кюри—Вейса при T < 20 К с $\theta_{\rho} = 0$ К и $\mu_{9\phi\phi} = 8,2 \,\mu_{\rm B} (\mu_{9\phi\phi}^{\rm reop} = 7,94 \,\mu_{\rm B})$. Это показывает, что обменное взаимодействие R³⁺—R³⁺ в RFeGe₂O₇ существенно меньше взаимодействия F³⁺—Fe³⁺.

Исследование магнитных свойств соединений, содержащих кроме Fe³⁺ магнитные РЗ ионы, показывает, что в них помимо взаимодействия Fe³⁺—Fe³⁺ имеется сравнимое по величине антиферромагнитное взаимодействие Fe³⁺ — R³⁺. Магнитный

Рис. 2. Температурные зависимости обратной молярной восприимчивости χ_{N}^{-1} (a) и модуля Юнга $\Delta E/E$ (б) для RFeGe₂O₇ (1 — La, 2 — Sm, 3 — Eu, 4 — Nd, 5 — Pr, 6 — Gd) и GdGaGe₂O₇ (7)

момент RFeGe₂O₇ при 4,2 K в поле 60 кЭ существенно меньше магнитного момента насыщения. Зависимости $\chi_{M}^{-1}(T)$ при T > 10 K следуют закону Кюри—Вейса (а не закону Нееля, как следовало бы ожидать для магнетика с неэквивалентными магнитными ионами), причем θ_{p} меняются от —46 K для EuFeGe₂O₇ до —9 K для GdFeGe₂O₇ (см. таблицу). При T < 10 K зависимости χ^{-1} для RFeGe₂O₇ отклоняются от линейных и имеют слабо выраженные аномалии, не позволяющие надежно определить температуру упорядочения T_{N} .

делить температуру упорядочения T_N . Отметим, что при 4,2 К величины χ для RFeGe₂O₇ с магнитными РЗ ионами и LaFeGe₂O₇ сравнимы (отличаются в 2—4 раза). Это означает, что R³⁺-подрешетка связана антиферромагнитно за счет Fe³⁺ — R³⁺ взаимодействия. Если бы последнее было пренебрежимо мало по сравнению с Fe³⁺ — Fe³⁺ взаимодействием, R³⁺-подрешетка оставалась бы парамагнитной, давая определяющий вклад в магнитную восприимчивость при низких температурах. При этом величина χ была бы существенно больше, как в случае GdGaGe₂O₇, где Gd-подрешетка является парамагнитной.

С целью определения температур магнитного упорядочения соединений RFeGe₂O₇ были проведены измерения модуля Юнга *E* методом составного вибратора (рис. 2, 6). Зависимости *E*(*T*) исследованных образиов обнаруживают аномалин, характерные для фазового перехода II рода парамагнитная—антиферромагнитная фаза. Температуры *T_N*, определенные по аномалиям *E* (см. рис. 2, б) и из мёссбауэровских измерений (см. таблицу), согласуются между собой. Вклад в *E* за счет магнитного упорядочения Fe³⁺-подрешетки в LaFeGe₂O₇ на порядок меньше, чем в соединениях с магнитными P3 ионами. Это объясняется, по-видимому, тем, что взаимодействия Fe³⁺ — Fe³⁺ — R³⁺ сравнимы. В этом случае упорядочение F³⁺подрешетки сопровождается возникновением эффективного обменного поля на P3 ионах, дающих за счет большого магнитоупругого взаимодействия основной вклад в аномалию *E* при упорядочении.

Таким образом, установлено, что в соединениях RFeGe₂O₇ с легкими РЗ ионами при температурах 5-9 К наблюдается одновременное антиферромагнитное упорядо-

чение Fe³⁺ и R³⁺ ионов. Представляет интерес дальнейшее изучение этих соединений, прежде всего спиновых структур, с помощью дифракции нейтронов.

Авторы выражают благодарность В. И. Соколову за проявленный интерес и полезное обсуждение результатов работы.

СПИСОК ЛИТЕРАТУРЫ

[1] Jarchow O., Klaska K.-H., Schenk-Strauß H.//Z. Krist. 1985. 172, N 3-4. Р. 159—166. [2] Любутин И. С.//Физика и химия ферритов/Под ред. К. П. Белова и Ю. Д. Третьякова. М., 1973. С. 68—97.

Поступила в редакцию 16.09.86

(1)

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1987. Т. 28, № 4 🤐

УДК 537.226.33

ВЛИЯНИЕ у-ИЗЛУЧЕНИЯ НА ТЕПЛОЕМКОСТЬ И СПОНТАННУЮ ПОЛЯРИЗАЦИЮ КРИСТАЛЛОВ ДИГЛИЦИННИТРАТА

Б. А. Струков, З. В. Савилова, С. А. Тараскин

(кафедра общей физики для естественных факультетов)

Кристаллы диглициннитрата (NH₂CH₂COOH)₂HNO₃ (ДГН) при T = 206,5 К испытывают фазовый переход второго рода типа «порядок—беспорядок» с изменением симметрии $2/m \rightarrow m$ [1, 2]. Физические свойства в области фазового перехода удовлетворительно следуют теории Ландау [3—5]. Характерной особенностью диэлектрической проницаемости является большой доменный вклад в полярной фазе [3, 4]. В настоящей работе исследовались температурные зависимости теплоемкости, диэлектрической проницаемости и спонтанной поляризации у-облученных кристаллов ДГН. Методика измерений аналогична использованной в работах [4, 5]. Облучение кристаллов проведилось при комнатной температуре.

Кривая теплоемкости для чистого кристалла имеет типичный λ -пик с избыточной теплоемкостью в интервале 90÷206,5 К [4]. При T_{κ} =206,5 К наблюдается скачок теплоемкости. Воздействие γ -излучения приводит к следующим эффектам: 1) размытию фронта скачка теплоемкости и уменьшению его высоты; 2) понижению температуры фазового перехода T_{κ} ; 3) уменьшению избыточной энергии фазового перехода, рассчитанной по формуле

$$\Delta Q = \int_{0}^{\infty} \left(c_p \left(T \right) - c_{\text{per}} \left(T \right) \right) dT,$$

где c_p — теплоемкость при постоянном давлении, c_{per} — регулярная часть теплоемкости.

Скорость уменьшения T_K с ростом дозы облучения D от 1 до 10 MP снижалась от 0,5 до 0,1 К/МР. При больших дозах T_K стабилизировалась, затем вновь начинала повышаться (рис. 1). Следует отметить, что в кристаллах триглицинсульфата (TГС), имеющего фазовый переход при $T_K = 322$ К, с ростом дозы происходило понижение T_K линейно со скоростью 1--2 К/МР [6] и при дозе 30 МР спонтанная поляризация исчезала. Таким образом, изменение температуры фазового перехода в кристаллах ДГН, облученных при комнатной температуре, имеет более слабую дозовую зависимость, чем в кристаллах TГС.

Дозовые зависимости величины $\Delta Q/\Delta Q_0$ (ΔQ_0 — энергия фазового перехода необлученного кристалла) для двух различных интенсивностей потока излучения изображены на рис. 2. При I = 450 P/c доза облучения накапливалась постепенно, при I = 650 P/c исследовалось влияние больших разовых доз. Видно, что при большей интенсивности излучения ΔQ изменяется сильнее.

Предполагалось, что при облучении кристаллов ДГН при комнатной температуре (в параэлектрической фазе) в образце создаются хаотически орнентированные дефекты [7]. Сравнение с данными для кристаллов с поляризованными дефектами (кристаллы ТГС, облученные в сегнетофазе [6]) показывает, что одинаковому смещению T_{κ} соответствует примерно одинаковое размытие области фазового перехода. Поскольку структуры ДГН и ТГС сходны, то можно предполагать, что для обоих кристаллов смещение T_{κ} одинаковым образом зависит от концентрации дефектов. Поэтому образующиеся в кристаллах ДГН при облучении в парафазе дефекты нель-