АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 539.186.24.172:546.33

УПРУГОЕ РАССЕЯНИЕ ЭЛЕКТРОНОВ АТОМАМИ НАТРИЯ В ОПТИЧЕСКОЙ МОДЕЛИ

А. Н. Грум-Гржимайло, О. И. Зайцева

(НИИЯФ)

В одноканальной оптической модели получены дифференциальные и полные сечения упругого рассеяния, а также полные сечения реакции при столкновениях электронов промежуточных энергий с атомами натрия. Анализируется применимость различных приближений для мнимой части оптического пстенциала.

Введение. В последнее десятилетие интенсивно исследуется применимость одноканальной оптической модели для описания упругих столкновений электронов промежуточной энергии с атомами. Привлекательна простота расчетов в этой модели, сводящихся к решению одноканальной задачи рассеяния. С этой целью предлагаются новые типы оптических потенциалов, как полуэмпирических, так и получаемых из первых принципов. Особое значение при этом имеют локальные центрально-симметричные потенциалы, как наиболее удобные для практических расчетов.

Большинство работ по применению оптических потенциалов к задаче упругого рассеяния относится к инертным газам, для которых имеется богатый набор экспериментальных данных по полным и дифференциальным сечениям и по сечениям реакции в широкой области энергий. В связи с появлением абсолютных измерений дифференциальных сечений упругого рассеяния электронов атомами щелочных металлов в области промежуточных энергий [1—4] актуальным становится исследование применимости к описанию этого процесса различных вариантов одноканальной оптической модели. В работе [5] были рассчитаны дифференциальные сечения упругого рассеяния электронов атомами лития при энергиях 54,4 и 60 эВ, а в работе [1] — атомами натрия в интервале 54,4 — 150 эВ. В обоих случаях было достигнуто неплохое согласие с имевшимися к тому времени экспериментальными данными. В качестве оптического потенциала в этих работах использовался локальный потенциал вида

$$V_{\rm opt}(E, r) = V_{\rm st}(r) + V_{\rm ex}(E, r) + V_{\rm pol}(E, r) + iV_{\rm abs}(E, r), \tag{1}$$

где $V_{\rm st}$ — электростатический потенциал атома в основном состоянии; $V_{\rm ex}$ — эффективный потенциал, учитывающий обмен налетающего электрона с электронами атома; $V_{\rm pol}$ — поляризационный потенциал; $V_{\rm abs}$ — потенциал поглощения, учитывающий переходы в открытые неупругие каналы; E — энергия электрона. Потенциал поглощения в работах [1, 5] строился на основе эйкональной модели рассеяния. Нахождение такого потенциала является достаточно трудоемкой задачей. С другой стороны, при анализе упругого рассеяния атомами инертных газов хорошо зарекомендовали себя простые и удобные для вычислений локальные сферически-симметричные потенциалы $V_{\rm abs}$, предложенные в работах [6—9], и их последующие модификации. Вопрос о применимости этих потенциалов к описанию упругого рассеяния атомами щелочных металлов изучен недостаточно. Лишь в работе [1] был сделан вывод о том, что использование потенциала V_{abs} Маккарти с сотр. [10] не дает согласия с экспериментальными данными по упругому рассеянию электронов атомами натрия. Цель настоящей работы — подробнее проанализировать применимость простых потенциалов поглощения для описания упругого рассеяния и полного сечения реакции на натрии в области энергий 54,4—150 эВ.

Теоретические модели. В расчетах мы использовали потенциал вида (1). Действительная часть потенциала строилась так же, как и в работах [1, 5] при анализе упругого рассеяния электронов атомами натрия и лития: в качестве V_{ex} использовался эффективный обменный потенциал, предложенный Фёрнессом и Маккарти [6], а в качестве V_{pol} — потенциал, полученный Байроном и Йохайном [11]. Волновые функции связанных состояний и электростатический потенциал основного состояния V_{st} вычислялись в модели Хартри—Фока.

Для потенциала поглощения V_{abs} мы опробовали несколько вариантов.

1. Потенциал Грина, использовавшийся в расчетах упругого рассеяния атомами инертных газов [7, 12, 13]:

$$V_{\rm abs}^{(1)}(E, r) = \frac{W^{(1)}(E)}{r} \left(e^{-r/d} - e^{-r/s}\right),\tag{2}$$

где $W^{(1)}(E)$, d и s — подгоночные параметры. Для инертных газов [7] энергетическая зависимость коэффициента $W^{(1)}$ аппроксимировалась формулой

$$W^{(1)}(E) = \omega \frac{\Delta}{E} \ln \left[\alpha \left(\frac{E}{\Delta} - 1 \right)^{\nu} + 1 \right],$$

где Δ — порог возбуждения мишени, а не зависящие от энергии параметры d, s, ω , a, v выбирались таким образом, чтобы воспроизвести экспериментальные данные по полному сечению реакции σ_{abs} в широком интервале энергий. Для атома натрия, как и вообще для щелочных элементов, в настоящее время сечение реакции измерено лишь в узком интервале энергий и с относительно невысокой точностью [2]. Поэтому в своих расчетах подгонку параметров d и s мы проводили так, чтобы при соответствующем выборе $W^{(1)}$ как можно точнее воспроизвести дифференциальное сечение упругого рассеяния при энергии 75 эВ. При этом мы получили: s=0,076 а.е., d=4 а.е., $W^{(1)}=-0,5$. Затем значения s и d оставались фиксированными, а коэффициент $W^{(1)}$ подгонялся заново для каждого значения энергии.

2. Потенциал, введенный в работах [8, 9] на основе приближения квазисвободного рассеяния с учетом паулевской блокировки:

$$V_{\rm abs}^{(2)}(E, r) = \frac{1}{2} \rho(r) \,\overline{\sigma}_B(E, r) \, v_{\rm loc}(E, r), \tag{3}$$

где σ_B — усредненное сечение бинарных электрон-электронных столкновений, допускаемых принципом Паули; $\rho(r)$ — плотность основного состояния мишени; $v_{\text{loc}}(E, r) = \sqrt{2(E - V_{\text{st}}(r) - V_{\text{ex}}(E, r))}$ — локальная скорость падающих электронов. Потенциал (3) использовался для случая инертных газов, где существует конечная энергетическая щель $\Delta \neq 0$ между занятыми и свободными электронными состояниями. Поскольку у щелочных металлов есть вакансия во внешней подоболочке, то $\Delta = 0$ и величина σ_B обращается в бесконечность [9]. Логично по-

2 ВМУ, № 5, физика, астрономия

этому использовать Δ как параметр модели. В данной работе в качестве иллюстрации мы провели расчеты с величиной Δ , равной энергии возбуждения низшего состояния натрия ($\Delta = 2,1$ эВ).

3. Потенциал Фёрнесса и Маккарти [6]:

$$V_{\rm abs}^{(3)}(E, r) = \frac{E}{E - V_{\rm st}(r)} \sum_{i} W_{i}^{(3)}(E) R_{i}^{2}(r).$$
⁽⁴⁾

4. Модификация потенциала Фёрнесса и Маккарти [10] :

$$V_{\rm abs}^{(4)}(E, r) = W^{(4)}(E) \frac{E}{E - V_{\rm st}(r) - V_{\rm pol}(E, r)} \sum_{i} N_{i} P_{i}^{2}(r),$$
(5)

где $P_j(r) = rR_j(r)$ — радиальная функция электрона *j*-й подоболочки; N_j — число электронов на *j*-й подоболочке; $W_j^{(3)}$ и $W^{(4)}$ — подгоночные параметры. Суммирование производится по подоболочкам, вносящим существенный вклад в неупругие процессы при данной энергии. В своих расчетах мы учитывали вклад только 3*s*-орбитали.

Помимо перечисленных четырех вариантов расчеты проводились. для случаев $V_{abs}=0$; $V_{abs}=V_{pol}=0$ (приближение 1-го порядка); $V_{opt}=0$ (плосковолновое борновское приближение).

Рис. 1. Радиальные зависимости слагаемых оптического потенциала для энергии 75 эВ: $V_{st} + V_{ex}$ (1); V_{pol} (2); $V^{(1)}_{abs}$ (3); $V^{(2)}_{abs}$ (4)

Расчет угловых распределений $d\sigma/d\Omega$, полных сечений упругого рассеяния σ_{e1} и сечений реакции σ_{abs} проводился стандартным методом разложения по парциальным волнам и с использованием оптической теоремы. Соответствующие соотношения приведены, например, в [12].

На рис. 1 приводятся для сравнения радиальные зависимости различных слагаемых оптического потенциала при энергии электрона 75 эВ.

Результаты и обсуждение. Полученные нами дифференциальные сечения, их сопоставление с экспериментальными данными [1, 2] и расчетами в эйкональной оптической модели [1] приведены на рис. 2. В таблице приведены величины полного сечения реакции и полного сечения упругого рас-сеяния. Экспериментальные данные для σel и σabs имеются в области энергий до 54,4 эВ [2]. Чтобы получить нижнюю оценку *о*abs для больших энергий, мы провели интерполяцию и экспериментальные просуммировали сечения возбуждения 3s-3p перехода

[14] с полными сечениями ионизации натрия [15]. В исследованной области энергий форма дифференциальных сечений, полученных без учета потенциала поглощения, сильно отличается от экспериментальных угловых распределений. Учет потенциала поглощения в формах (3)—(5) не дает согласия теории с экспериментальными данными. Потенциал (3) приводит к сильному подавлению рассеяния в заднюю полусферу и образованию глубокого дополнитель-

Рис. 2. Дифференциальные сечения упругого рассеяния электронов на натрии при энергии 54,4 (a), 75 (б), 100 (a) и 150 эВ (г). Расчет с $V^{(1)}{}_{abs}$ при $W^{(1)} = -0,5$ (1) и -0,25 (2); с $V^{(4)}{}_{abs}$ при $W^{(4)} = -0,5$ (8); с $V^{(2)}{}_{abs}$ (9) и с $V_{abs} = 0$ (4). Эйкональная оптическая модель [1] (3); плосковолновое борновское приближение (5). Экспериментальные данные из [1] (6) и [2] (7)

2*

ного минимума в сечениях в области углов 40—60° (рис. 2, β). Заниженные сечения рассеяния на большие углы потенциал (3) давал также и для случая инертных газов [9]. Дополнительный минимум в сечениях образуется и при использовании потенциалов (4) и (5). Для последнего случая, проиллюстрированного на рис. 2, δ , приведены результаты расчетов с коэффициентом $W^{(4)} = -0,5$. Расчет сечения поглощения с такой величиной $W^{(4)}$ воспроизводит оценку σ_{abs} , приведенную в таблице. Использование потенциала поглощения Грина (2) приводит в целом к хорошему согласию с экспериментальными данными в рассматриваемом интервале энергий. Это согласие не хуже, чем дает эйкональная оптическая модель [1]. Амплитуда мнимой части потенциала

Сечения	Эксперимент [2]	$V_{\rm abs}^{(2)}$	$V_{abs}^{(1)}; W^{(1)} = -$	-0,5 (W ⁽¹⁾ =	— 0,25
		E = 54	,4 эВ		
σ_{el} σ_{abs}	6,4 28,3	4,62 12,2 E = 75	5,71 25,8	(5,27) (19,2)	
$\sigma_{e1} \sigma_{abs}$	22,3*	L = 75 3,68 10,0	4,70 22,5		
σ_{e1}	18,3*	E = 10 3,05 8,40	3,97 19,8		
σ_{el}	13,9*	E = 15 2,37 6,55	0 эВ 3,07 16,1		

Полные сечения упругого рассеяния и реакции (ла²)

 Нижняя оценка на основе экспериментальных данных работ [14, 15].

поглощения, подогнанная под экспериментальные данные работы [1], медленно изменяется с энергией в интервале 54,4-150 эВ, имея тенденцию к уменьшению при увеличении энергии от 75 к 150 эВ. Это уменьшение очень незначительно, поэтому на рис. 2 и в таблице приведены результаты, полученные с одним и тем же коэффициентом $W^{(1)} =$ = -0,5. Увеличение абсолютной величины $W^{(1)}$ в области $W^{(1)} = -0,5$ приводит к уменьшению сечения в интервале углов $\theta \ge 15^{\circ}$ и к увеличению сечения рассеяния на малые углы. Аналогичное «аномальное» увеличение сечения упругого рассеяния на малые углы при усилении потенциала поглощения (на больших расстояниях от ядра) было ранее обнаружено в работе [13]. В нашем случае, однако, этот эффект проявляется намного более выразительно и может приводить к увеличению полного сечения упругого рассеяния одновременно с увеличением сечения реакции (см. таблицу, E = 54,4 эВ).

Усиливающееся при энергии 150 эВ рассогласование кривых, полученных с потенциалом (2), с экспериментальными данными указывает на то, что с увеличением энергии радиальная зависимость потенциала V_{abs} изменяется. В частности, потенциал поглощения должен при этом усиливаться на малых расстояниях, о чем свидетельствует завышение сечений рассеяния на большие углы [13]. Уменьшением коэффициента $W^{(1)}$ можно добиться лучшего согласия с экспериментом

ä

для рассеяния в переднюю полусферу, при этом, однако, сечение рассеяния на большие углы оказывается еще более завышенным.

Для энергии 54,4 эВ в настоящее время существует два набора данных по дифференциальным сечениям [1, 2]. Результатам работы [2] соответствует коэффициент $W^{(1)} = -0.25$.

Полное сечение реакции, полученное с потенциалом поглощения Грина, хорошо соответствует экспериментальным данным и проведенным на их основе оценкам. Потенциал (3) дает примерно в два раза заниженные значения σ_{abs} . Анализ, проведенный в работе [13], а также результаты наших расчетов дают основание предполагать, что потенциал (3) является, с одной стороны, слишком короткодействующим для того, чтобы обеспечить достаточную величину σ_{abs} , а с другой слишком сильным на малых расстояниях, что отражается в заниженных сечениях упругого рассеяния на большие углы. Возможно, что частично эти дефекты потенциала (3) участся преодолеть путем надлежащего переопределения условий паулевской блокировки в величине σ_{B} .

Заключение. В работе проанализирована применимость простейших локальных оптических потенциалов поглошения к залаче упругого рассеяния электронов атомами натрия при энергиях 54.4-150 эВ. В этой области энергий лучшие результаты дает использование потенциала Грина. Дифференциальные сечения рассеяния воспроизводятся при этом не хуже, чем при использовании потенциала оптической эйкональной модели, а значения сечений реакции находятся в соответствии с экспериментальными данными и проведенными на их основе оценками. Другие использованные в работе потенциалы поглощения имеют существенно отличающиеся от потенциала Грина радиальные зависимости и не воспроизводят экспериментальные данные. Для детального изучения формы мнимой части оптического потенциала необходимы надежные экспериментальные данные по угловым распределениям электронов и полным сечениям реакции в широком интервале энергий. Представляет интерес использование потенциала Грина в теоретических расчетах сечений упругого рассеяния атомами других шелочных металлов, а также в расчетах неупругих процессов их возбуждения.

Авторы благодарят проф. В. В. Балашова за ценные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

[1] Teubner P. J. O., Buckman S. J., Noble C. J.//J. Phys. B. 1978.
11. P. 2345-2354. [2] Srivastava S. K., Vuskovic L.//J. Phys. B. 1980. 13.
P. 2633-2643. [3] Williams W., Trajmar S., Bozinis D.//J. Phys. B. 1976.
9. P. 1527-1529. [4] Vuskovic L., Maleki L., Trajmar S.//J. Phys. B. 1984.
17. P. 2519-2525. [5] Vanderpoorten R.//J. Phys. B. 1976. 9. P. 535-538.
[6] Furness J.B., McCarthy I.E.//J. Phys. Rev. 1981. A24. P. 3010-3018.
[8] Staszewska G., Schwenke D.W., Thirumalai D., Truhlar D.G.//J. Phys. B. 1983. 16. P. 281-287. [9] Staszewska G., Schwenke D. W., Thirumalai D., Truhlar D.G.//J. Phys. B. 1983. 16. P. 281-287. [9] Staszewska G., Schwenke D. W., Thirumalai D., Truhlar D.G.// Phys. Rev. 1983. A28. P. 2740-2751. [10] McCarthy I. E., Noble C. J., Phillips B. A., Turnbull A. D.// Phys. Rev. 1977. A15. P. 2173-2185. [11] Byron F. W. Jr., Joachain C. J.// Phys. Rev. 1974. A9. P. 2559-2568.
[12] Thirumalai D., Truhlar D. G.//Phys. Rev. 1982. A25. P. 3058-3071.
[13] Staszewska G., Schwenke D. W., Truhlar D. G.//Phys. Rev. 1984. A29.
P. 3078-3091. [14] Enemark A. E., Gallagher A.// Phys. Rev. 1972. A6. P. 192-205. [15] McFarland R. H., Kinney J. D.// Phys. Rev. 1965. 137. P. A1058-A1061.

Поступила в редакцию 25.06.86