УДК 536.41:669.26

НИЗКОТЕМПЕРАТУРНАЯ АНОМАЛИЯ КОЭФФИЦИЕНТА ТЕПЛОВОГО РАСШИРЕНИЯ ЧИСТОГО ХРОМА И ХРОМА С ПРИМЕСЯМИ

В. Е. Роде, О. М. Иванова, Л. А. Архипкин, К. Б. Целикян (Болгария)

(кафедра магнетизма)

Исследована температурная зависимость коэффициента теплового расширения собразцов хрома разной чистоты. Определен магнитный вклад в тепловое расширение образцов и показано, что он существует в широком интервале температур.

Хром является основой «немагнитных инваров» — сплавов с малыми значениями коэффициента теплового расширения (КТР) α в области комнатных температур, не имеющих магнитного момента в этом температурном интервале. Однако до настоящего момента в литературе [1—7] существуют различные данные о температуре и характере перехода антиферромагнетизм ⇒парамагнетизм (АФМ ⇒П), а также о существовании отрицательного хода температурной зависимости КТР хрома (рис. 1).

Для получения точных значений $\alpha(T)$ хрома нами были исследованы образцы хрома разной чистоты: 99,99; 99,98 и 98,80 ат.% в интервале температур 4,2—360 К.

Исследование теплового расширения проводилось на кварцевом дилатометре с выносной тензометрической головкой импульсным методом [8]. Относительная ошибка измерения величины КТР образцов составляла 6—7%. Основной состав образцов был определен методом химического анализа. Состав примесей в образцах хрома (таблица) установлен методом дазерного микроанализа.

N ₂	Содержание при- месей в образцах хрома (ат. %)	Примеси									
		Cu	Ni	Fe	Mg	Si	Al	Ti	Ca	0	N
1	0,01	+	-	+	+	+	_	+	+	+	+
2	0,12	+	_	+	+	+	+	+	+	+	+
3	1,20	+	+	+	+	+	+	+	+	+	+

Знаками «+» и «-» отмечено присутствие или отсутствие соответствующих примесей.

С помощью механической обработки образцам придавалась форма цилиндра

длиной 30-40 мм и диаметром 6 мм.

Результаты измерений КТР α трех образцов хрома (см. таблицу) в зависимости от температуры представлены на рис. 2. В области температур 4,2—50 К отрицательные значения α появляются только у образца 3. Из рис. 2 видно, что, во-первых, увеличение количества примесей в образце хрома понижает температуру Нееля T_N (что совпадает с результатами работ [1—7]) и делает аномалию КТР в районе

перехода АФМ ⇒П более размытой.

Для анализа аномального поведения α чистого хрома и хрома с примесями определялся магнитный вклад α_m в тепловое расширение исследуемых образцов по схеме Вайта [9]. Предполагалось, что $\alpha_{\exp p} = \alpha_L + \alpha_m$, где $\alpha_{\exp p} = \text{полученные}$ нами данные, $\alpha_L = \text{решеточный}$ вклад в тепловое расширение, который определяется законом Грюнайзена: $\alpha_L = \gamma_{C_V \varkappa_T}/3V$ (γ — параметр Грюнайзена, c_V — теплоемкость при постоянном объеме, \varkappa — изотермическая сжимаемость, V — молярный объем). На основании данных [6] для α и C_p хрома при температуре T =700 K, когда, согласно [10—12], локальный магнитный момент хрома отсутствует и нет антиферромагнитного состояния, τ . е. α_m =0, была определена величина $k = \gamma \varkappa_T (3V)^{-1}$. Используя k, по закону Грюнайзена в виде $\alpha_L = kc_V$ была рассчитана температурная зависимость $\alpha_L(T)$ (рис. 2, 3). Қак видно из рис. 3, температурный ход α парамагнитных сплавов $Cr_{95}V_5$ [6] и $Cr_{94}Fe_{16}$ [13] практически совпадает с $\alpha_L(T)$ в широком интервале

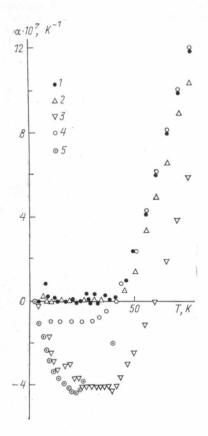


Рис. 1. Экспериментальные значения коэффициента теплового расширения в области низких температур для образцов хрома разной чистоты: 99,99 (1); 99,88 (2) и 98,80 ат. % (3); чистый хром (4— по данным [6] и 5— по данным [7])

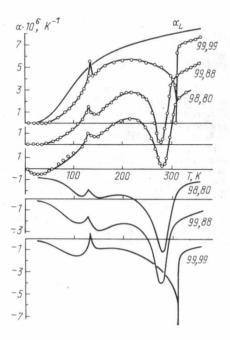
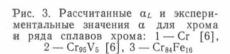
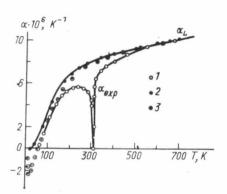




Рис. 2. Экспериментальные значения коэффициента теплового расширения α (белые кружки) и магнитный вклад в тепловое расширение α_m (сплошные линии в нижней части рисунка) для образцов хрома разной чистоты (цифры при кривых — содержание хрома в ат. %); α_L — рассчитанные значения решеточного вклада в тепловое расширение

температур. Это дает основание в качестве α_L использовать наши расчетные значения $\alpha_L(T)$ для хрома и сплавов хрома с примесями. Как видно из рис. 2, магнитный вклад α_m в тепловое расширение хрома существует в широком интервале температур, а не только в области перехода $\mathrm{A\Phi M} \! \neq \! \Pi$. С увеличением концентрации примесей аномалия становится более размытой и сдвигается в область низких температур. Для исследованного образца 1 (99,99 ат.% Сг) этот переход узкий и соответствует $T\!=\!311$ К. Увеличение концентрации примесей приводит к появлению отрицательных значений α при низких температурах (см. на рис. 2 кривую 3 при 98,80 ат.% Сг). Из рис. 2 видно также, что магнитный вклад в тепловое расширение хрома существует и при температурах выше T_N , что соответствует результатам работ [11, 12], в которых у чистого хрома наблюдалось неупругое нейтронное рассеяние в интервале температур 115—542 К, свидетельствующее о наличии ближнего магнитного порядка (некоторой локальной волны спиновой плотности).

СПИСОК ЛИТЕРАТУРЫ

[1] Hidnert P.//J. Research of NBS. 1941. 26, N 1. P. 81—86. [2] Matsumoto T., Mitsui T.//J. Phys. Soc. Japan. 1960. 27. P. 786—790. [3] Hidnert P.///J. Research of NBS. 1941. 27, N 2. P. 113—124. [4] Bolef D. I., Klerk J. de.///Phys. Rev. 1963. 129, N 3. P. 1063—1067. [5] Stranmanis M. E., Weng C. C.////Acta Cryst. 1955. 8, N 7. P. 367—370. [6] Roberts R. B., White G. K., Fawcett E.//Physica. 1983. B119. P. 63—67. [7] Новикова С. И. Тепловое расширение твердых тел. М., 1974. [8] Роде В. Е., Кавалеров В. Г., Лялин А. И., Финкельберг С. А.//Приб. и техн. эксперимента. 1984. № 6. С. 193—196. [9] White G. K.// Proc. Phys. Soc. 1965. 86. P. 159—169. [10] Brown P. J., Ziebeck K. R. A.//J. Appl. Phys. 1984. 55, N 6. № 1881—1886. [11] Ziebeck K. R. A. et al.//Z. Phys. B. 1982. 48, N 3. P. 233—239. [12] Fincher C. R., hirane G., Werner S. A. // Phys. Rev. 1981. B24, N 3. P. 1312—1322. [13] Роде В. Е., Кавалеров В. Г., Иванова О. М., Сами М. Х. // ФММ. 1986. 21, № 1. С. 176—177.

Поступила в редакцию 20.01.87

Поправка

В части тиража нашего журнала в статье В. И. Шестакова «Об эквивалентности пассивных двухполюсников» (\mathbb{N}^2 3 а 1987 г., с. 31—36) в таблицах 1 и 2 не пропечатаны отдельные символы. 1-ю строку табл. 1 следует читать: \mathfrak{t} \mathfrak{f} \mathfrak{t} 2-ю строку табл. 2 следует читать: \mathfrak{f} \mathfrak{f}