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A study is reported ·of spin dynamics for a Wayssenhoff liquid in a 
;ravitational field. The following theorem is proved: the nontrivial 
spin of the Wayssenhoff liquid that satisfies the Frenkel condition 
is conserved if and only if the liquid moves without acceleration. 

The Einstein-Cartan theory is a direct generalization of the general theory 
of relativity within the framework of the gauge approach in gravitation [l]. 
The gravitational Lagrangian is constructed in the Einstein-Cartan theory from 
the Hilbert-Einstein ;general theory of relativity by replacing the Christoffel 
symbols with the Riemann-Cartan connectedness (Lorentz gauge field), L1 ="-(l/2?<)R, 
x=8nG/~. The field equations are derived in the Einstein-Cartan theory from a 
variational principle. In the first-order formalism, when the independent vari
ables are the gravitational gauge fields h,• and r• •• , the total action S=Sd4xh(L1+L,,.). 
leads to the Einstein-Cartan (-Sciama-Kibble) equations 

(1) 

(2) 

!where the contractions of the local Lorentz curvature R• ... and twist Q• .. (which 
;are the strengths ,)f tne gravitational gauge field) are defined in a standard 
:way: Ras..:::..Rtta..,Ji'o, Q11=Q411.Jiva,·R·=ha.µ.R4,,,. 

The sources of the gravitational gauge field 

are canonical energy-momentum and spin tensors. 

When astrophysical and cosmological problems are examined in the Einstein
Cartan theory, the source is naturally taken to be the ideal spinning liauid. 
'rn a previous paper [2] we constructed a systematic variational theory of a 

l

liquid with soin in a gauge theory of gravitation. The equations of motion of 
tne liquid were obtained in first-order formalism, and it was shown that the 
sources were 

r•.--pa•.+u• (u.(s+p)-u•v ,s• •• ), ( 3) 

(4) 

I 
In the oresent paper, we consider the application of the model (3)-(4) 
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cosmol~gical.problems in.the Eijst~iri-Cartan and more general gauge theories 
based on Lagrangians that are q adratic functions of twist and curvature. How
ever, before we proceed to the ynamics of the gravitational.field proper, and 
to the study of the effect of sr/in of matter upon it, we must examine the dy
namics of the spin of the liqui4 (3)-(4) in a gravitational field. As far as 
we know, this problem has not b~en discussed in detail in the literature, and 
some exi,,ting publications (seej for example, [2]) contain inaccuracies. 

We have to know the dynam~cs of a spinning liquid in u4 in order to be able 

to obtain a closed set of gravilational equations. To achieve this, we must not 
only specify 'the sources (3)-(4 , but also augment (1)-(2) with the equation of 
state of the medium and also_th translational and rotational equations of motion 
of the spinning liquid (see L2] • Cosmological models in the Einstein-Cartan 
theory were previously investigil,ted in [3-5]. From our standpoint, the problem 
with these publications is that jthe phenomenological model of the Wayssenhoff 
liquid was not rigorously emplo~ed: instead of the complete equations of spin 
motion · 

i 

I Sall= u•u,.S~ - uPu,.S•• ( 5) 

(where the dot represents the sibstantive derivative, see [2]), they used the 
so-called spin conservation law , 

I 

I 

• 'i7,(u•S.,)=0. ( 6) 

Although all solutions of (6) are also solutions of (5), the reverse is 
not in general true. This mean that the use of (6) instead of (5) to determine 
spin dynamics in the Einstein-C rtan theory produces an artificial r~duction in 
the size of the manif'old 'of adm ssible metrics. We shall show that,· fo'r a wide . 
class of physically interesting cosmological models, condition (6) can be satis
fied only for trivial solutions without spin, S 

13 
= 0, but the complete equations 

I a 
of motion, given by (5), are al~ays valid. This result follows from the follow-
ing theorem. ' 

Theorem. The nontrivial jpin (Sae 1' OJ' of the Wayssenhoff liquid satisfy

ing the Frenkel condition u.Sall= , is conserved in the Eirrstein-Cartan theory if 
and only if the liquid moves without acceleration, i.e., ll~'lµu«==O. 

It is 1,;rell known that ~o dbtain a unique spin dynamics in the phenomeno
logical Wayssenhoff theory we m~st impose additional conditions on spin density 
(for example, the Frenkel, Tul'clhiev, or Papapetrou conditions). The Frenkel 
condition j · 

l u.Sall= 0, ( 7 ) 

is the most convenient in cosmollogical problems in t11e Einstein-Cartan theory, 
":nd ·.~as employed p::-actically witlhout exception in early works, including [ 3-5]. 
l.n rigorous variational theory [,2], we no longer have the freedom to choose the 
additional conditions, whereas (!7) is satisf'ied automatically. 

! 

Before we proceed to a propf, we note that, by virtue of (2), the trace of 
twis;, is zero in the Einstein-C~'rtan theory" so that V,=V, throughout. 

The direct statement of t e theory is obvious. Thus, suppose that the 
liquid moves in u4 without acceleration: 

u•'i7,u4 =0. C.8) 
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It then follows .from ( 8) and ( 7) that 

u,.S•P=-(u•V .u.)S•P+u•V .(u,.S~P) =0 

and, consequently, spin consideration (6) follows from (5). 

We must now prove the converse statement. Suppose that the spin is con
served, i.e., w~ have (6), in which (5) is satisfied identically. The ?renkel 
condition then has two important consequences. 

The algebraic equation (7) means that the 4-velocity of the liquid uµ is 

an eigenvecto·r of the matrix sa.S (spin density) t-.ri th zero eigenvalu.e. Di£'feren
tiating (7) along a current line, i.e., ap~lying to it the operator u!''7,, and 
using (6) and (7), we find that 

(9) 

i.e,, the acceleration vector is ~lso an eigenvector of the spin matrix (again, 
with zero eigenvalue). 

We must now carry out the proof by reductio ad absurdum. We shall suppose 
that the spin is nontrivial and the acceleration of the liquid is nonzero, so 
that tl•=u•V,u•+O. It is then readily seen that repeated derivatives of ( 9) along 
the current lines, u•V,, yield new nonzero eie;envectors of the matrix S«P; We 
shall show that this (generally infinite) sequence of eigenvectors can be used 
to select a tetrad which forms an orthonormal basis at each point of u4 . 

(0) (0) (0) 

Let us construct this basis. For the timelike vector e,., gt'•e,.e.= !, it is 
natural to take the 4-velocity 

(10) 

Since acceleration is perpendicular to velocity u•u.=o, it is a spacelike vector. 
We shall therefore take the spacelike vector of the orthogonal basis in the form 

(I) !f'V..,. 

'•=y _,;pr;f (,11) 

(1) 

Differentiating eis~=O, we obtain a further snacelike 
~ (1) 

vector of the spin matrix, 
(I) 

IP'7 0e,. .• By construction, tnis is orthogonal to e,., but 

Let v" 
if u•'-"0, ''I e 

. I (ll. 

~tPV.,e,.. 

can now use 

(12) 

We note that this vector differs from zero if and 

v to construct the ~hird vector of the orthogonal µ 

basis. In fact, the 4-vector 

\2). ai.+cr11-e,.- · (13) Y l "."""'cra.cra. 

(OJ (IJ 

only 

is spacelike and orthogonal to e,. and e,.. By construction, it is also an eigen-

vector of s"S. 

To obtain the latter vector from the required tetrad, consider the vector 
Za==u"V.aoa• It is clear that it is also an eigenvector of the spin matrix and 
satisfies the following orthogonality relations: 
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z•u•i= o, z"e• = -v0 u" V - u,UP. ( 14 ) 

Hence it is clear that zµ
1

1 is nonzero if and only if vµ is nonzero, i.e., 
when acceleration is nontrivial.I We can now readily verify, using (12), (13), 
and (14) that the vector ·· 

,., : v-· -. -. .., "' e.=c(z•-V•"° -upuPe.+e.u•v.(1/1-vpuP)) (l5) 

co> tn <2J I . 

is orthogonal to e., "•• e., and thf constant c can always be chosen so that the 
(:I) (3} ' 

normalization condition e.e,,a""=tl is satisfied. 

Thus, assuming that u•,,..o,iwe can use (10), (11), (13), and (15) to define 
(11)-

at each point of u4 a local ort onomal basis ••· a=O, I, 2;··3. Since, by construc-

tion, all these vectors are eig~nvectors of the spin matrix 

l 1;:.s•P·=O, 

we find from this tnat any vect r field in u4 is also an eigenvector of the ma

trix saB with zero eigenvalue. !However, this is possible only if Sae = 0 through

out u4 • Since this conflicts t*emassumption of nontrivial spin, we must admit 

that at least one of the vectort ••• l I, 2, 3 is zero. As already noted, this is 
possible if and only if there it no acceleration. This proves the theorem. 

The above result has impo~tant consequences, the most .significant of which 
is that it restricts the class d>f admissible metrics for the descrip.tion· of 
cosmological models. Actually, lit is readily seen that the requirement of spin 
conservation (6) imposes constr1ints both on the Riemann connectedness and on 
curvature. The former is obviols in comoving coordinates, when the liquid ve
locity is Uo=a~. Zero accelera ion is equivalent to 1'~=0 in this case (here 
~nd henceforth a tild.e denotes i~mann objects constructed from the metric alone: 
r•,. are the Christoffel symbols \l, is the covariant derivative determined by 
them, R•,.. is the Riemann twist, and so on). The last equation excludes, for 
example, nonstationary anisotrotjic cosmological models that arise naturally in 
the theory C3 )-( 4). On the othE!r hand (even if we do not consider that the co
ordina-ces are .comoving), we can I use the translational equations of motion to 
deduce directly a restriction ol the curvature. 

In point of fact, the translational equations follow from the conservation 
of the canonical energy-momentum tensor (3) in u4 [2]: 

I ... 
\l,T• • .f.2Q•,,TI'.+ (1/2)Sa!IR.,,.u•=O. ( 16) 

where 'V, and R_. are constructe~ from the complete Riemann-Cartan connectedness 
','fith twist, 

r•~=r· .. +Q•,.+Q,.•+Q,.•. c 17 J 

Suppose that spin is conserve~ ~n (6). The energy-momentum tensor (3) can then 
be written in the form ! 

Since by virtue of (7), twist 
Cartan theory, we find that 

1
. ~.= -p~+ u~u:, (e+ p). 

d fined by (2) has 
I 

' ! 

(18) 

zero trace in the Einstein-



2Q"'11vT'.=O, \7•T".=i7.r• •. u•\7.u•=u•"l.u•. 

Transforming the last term in (16) and dividing the Riemann-Cartan curvature 
into 'two parts, namely, the Riemann and the twist-dependent part, we find from 
(2), (4), and (17) that 

S"'R~ • .u•=S"'k.i • .u• +: (6~-u,µ•) ~.S'+ 

+" (S"'S11v-o;S'/2) u•i7 •"-· S"=s.,S"'. 

The above theorem then ensures that the last term is zero and (16) can be re
written in the fo~m 

9 • (-~+u"u,, (•tP))++S"'i., • .u•+ ~ (<~~::-u•u.,) 7.ss=O. (19) 

Combining uv with (19), we obtain 

u•V.s+ (s+p) ~ .u•=O, (20) 

so that (19) transforms to 

(-~+u•~) V' µ p--S' +-S"R., •• u•=O, - ( x ) · I p-
8 . 2 . (21) 

where we have again used the fact that the acceleration is zero. 

We thus find that, because spin is conserved (6), the Mathisson force 
given by the last term 'in (21) must be potential to ensure that the p,essure 
force determined by the gradient of the effective pressure p . .,, =p-(></B)S" is 
balanced. Since the Mathisson force is constructed directly from the Riemann 
curvature, the condition that the force must be potential produces a significant 
restriction on the possible structure of R•,... · 

We conclude with two technical points. The internal consistency of the 
theory can be checked by transforming to the so-called effective form of the 
Einstein-Cartan equations: by substituting the twist (2), (4) in (1) and by 
isolating in the Einstein tensor the Riemann and non-Riemann parts, we ensure, 
as is well known, the appearance on the right side of(l) ofthe hydrodynamicenergy
momentum tensor VJith 8att =e- (x/8)S2.- Pett =p- (x/8)S2 • It is then readily 'rerified 
that t-.he direct evaluation of the covariant divergence of the effective equa
tions (_l) leads ~o (.20), (_21), subjec~ to the condition that the spin is ~on
served. The second point is concerned with (7) which, as we have seen, plays 
a significant part in the proof of the theorem. In contrast to rigorous vari
ational theory [2], the Frenkel condition in the phenomenological model of the 
Wayssenhoff liquid is not the only possible one. However, it is clear that an 
analogous theorem can be proved for the Tul r chie~r or Papapetrou conditions, 
which again leads to restrictions (although somewhat different) on the metric, 
the Christoffel symbols, and the Riemann ·curvature. 

Thus, the above analysis of spin dynamics in the Einstein-Cartan theory 
leads to the following conclusion: the use of spin conservation in place of the 
complete equations of spin motion is in general incorrect. Specific cosmologi
cal models in which spin (4) is not conserved will be examined elsewhere. 
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