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It 1s shown that the level shift c¢f the even states in the discrete
spectrum, produced by the singular perturbation alsl=v, can be de-
scribed by the standard Rayleigh«Schroedinger formulas only for 0 <
< v < 3/2.

Singular perturbations of the form
AW (x) =i x|~ o (1)

are of consideratle interest in mathematical physics and have been examined
in a number of publicatlons (see the review paper in [1]). However, a correct
verturbation theory of the discrete spectrum has not so far been constructed
tecause it leads to difficulties asscclated with the removal of divergences
that arise when the matrix elements are evaluated.

We shall show here that a Raylelgh-Schroedinger perturbation theory exists
in the case of a weak singularity (1 £ v < 3/2 1n the even case and 1 £ v < 2
in the odd case).

Conslder the purely discrete spectrum of the Schroedinger equation (B=2m=

]
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¥ (x) —. (Vix) +70Ix!")1|=(x) +Ep (x) =0 (2)

with an even, smooth confining potential V{x}(lim V(X) =400, ¥ ({x) >0 for x>x>0, V(~x)=
= Vix), V(0}=0 Ffor z==0 V{)=Clx|¥, C, v>0).

When v < 2, (2) has two linearly independent soluticns, namely, wWu{x),
Ppv(x)=L2(0, a), a>0, whose behavicr for x + +0 is

Pu{x)=x(1+A(2—+) B —v)x*+..), (3)
Ve (€)== 1 — A (2=} (v— D)a®+ ..., v¥£2—n-, g=1, 2,..., (4)
Pu(x)=1+rz(lnc~—1)+.... (5)

When v = 2 - n"l, the form of (4) becomes somewhat different, put this has no

effect on any of ocur subsequent conclusicns.

As X » 0, solution (3) becomes identical with the odd solution § - (x) of
the unperturbed Schroedinger equation (2) with A = 0, and solutions (4) and (5)
become identical with the odd unperturbad solution § + (x).
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¥ (0)9~1(0) =§=0 (6)
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additional polint potential

V7 (x) + (Bl V{x) =AW (x) — U(x)) 9 (x) =0, (8)
U =28 LERLEL, (9)
5 |
28 (x)1 x| 2 Mhn () 51" + 28 (lte @, azs T, (107
: fd , TR

U@ =)ysh2=n1, ni=1, 2,..., b ()=—(v—1)", g=e(@—)"), -
2aln|x]6(x) +28(x)tge,” v=1, . _ (11)
£28(8) 12~ | a=Ln2. (i2)

where £(z) 1s the integer part of z and the coefficients hk(v) do not depend
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xitial. Even normalization of the function for
ve denoted DY Wne(x}, n=0, |, 2, and the energy
re ‘lb,-..;.(x)zcn-i-dﬂx_z-_i-...).

rrourbation is linear in A (10):

A\

[ x[ 7 —2(v— 1)~} xj '8 (x) (14)
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and, despite the fact that each of the terms in the perturbation mafrix element
Wie= Y $uiW (%) nsdx (15)
diverges, the total matrix element 1s finite and single;valued:

WM=2ihmw&“e2w—H“x“%unu=
NI A c .

=2 lim § as s (V2 (v=1) 28 (x—a)) dx =
A | \ - | (16)

=2 lim [— (=)™ £y ot | —— 17" 0t (@) i () +

a-»4
=17 S Qrrbnr) de] =2 0= ) § (Dhsa) 5iv

. The matrix element cannot be regularized for v > 3/2: divergences ~, AE
due to the following terms in the point perturbation U(x) (10) are found to re-
main. Attempts to introduce counterterms into the Schroedinger eguation for
v 2 3/2 (by analogy with quantum field theory) have been found to lead to a
contradiction.

When v = 1, the function w+l(x) has a logarithmic singularity [S5] and,
according %o (11), the matrix element-for g = 0 1is

Wip=—2 03 In % (s Yns)’ dx. o an

When 0 < v < 1, the point potential in the matrix element does not provide a
contribution, and we have the usual "good" perturbation theory.

Thus, matrix elements for even functions are finite only for v < 3/2.
However, the finlteness cof (16} and (17) 1s not sufficilent for the existence
cf the Raylelgh-Schroedinger coefficients of the perturbation theory series
(series in powers of A) for the energy levels and wave-~function projections
onte the unperturbed state, The Rayleigh-Schroedinger coefficientis may diverge
when the sums in the higher orders diverge [1], [5, pD. 153-15861:

L

E’='Z UAEf.”.
(nst, xp".)—Zv’Aw'" T
AED = 5O AE“’=WW AE‘ =z Woithtn,
AP =8, AV = W it (L =80,

where wnlx) are the normalized solutions of the Schroedinger eguation (2) and

Pan=(E,W—E, M-, The convergence of the sums in (18) and, especially, for the
higher order corrections, is determined by the .behavior of the levels E,® and
the matrix elements (16) and (17) for n » =,

~
[
0

Highly exclted states (n » 1) are satisfactorily described quasiclassically
and quasiclassical functions can also be used in perturbation theory to evaluate
the matrix element [5, pp. 206-225],
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where n labels the sequence of $tates and

nt=Nakn=i72(2) cos B (x), (20)
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E® mn ¥ (23)
Nnﬂun-‘*';'?_—:'rl. (24)
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well away from the right

he following expression for the matrix elements

¥ ]
12 x1—vpy sin k2 dx, (25)

]

(26)

=Ry (0) ==EpZoon¥ v+,

\tiaticn in (25) after expanding the phase (21

¥y the terms that shew the maximum rate of in-
is smooth and the integrand in (25) has a

-!, we can use the following well-known formula
in the asymptotic behavior of the ilntegral in

(272

which yields the following asymptotlc expression for the matrix elements (16):

Wia= a1, wi=(y +2 fp(v— D)—11.

-
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cn the other hand { a»l, Ypool, simllar estimates yield

(28)
WonbON N w2 (Rt )3, (29)
*, wa=(p+2)~ [y(v—1) —2]. (30)
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Among the terms that appear in the Rayleigh-Schroedinger coefficients for the
energy levels and wave-function projections [11, [5, pp. 163-166], the most
rapidly increasing with v are the coefficients appearing in the sum of the form

Z = E’ Wﬂi.Pt.nWt,f,Ili,n - q.-!-‘(ani,m. ( 3 1 )
] "9‘9-.-.t'

The convergence of (31) can be estimated by replacing summation for 1, j=I1, 2...5
with integration with respect to dx,dx,...dx, and introducing the s-dimensional
polar coordinates, as usual in field theory [7]. After Integration with respect
to the angles, the sum

Y~ oo (32)

gonverges as p + «, or the Integral (32) converges, i.e., by hypothesis,
(v, ¥) >0. (33)

The Rayleigh-Schroedinger perturbation theory is meaningful if all the

Rayleigh-Schroedinger coefflcients exist (converge), i.e., condition (33) is

valid for all s = 1, 2, ... When mge»lam fixed, we have
| pign = (B —ES) o (B0 g, 2y (y+ 2" (34)
Since the volume element of the s-dimensional space is dV.,oop*ldp, we find that
=2y — (5— [)w+sp—s, (35)
which together with (28}, (30), and (34%) yields
- ' Gem=ply+2)-1 (2541 — (s Dl | (36)
The converges conditions (33) are equivalent to A
V2= (s+ 1), s=L 2., (37)

i.e., the Rayleigh-Schroedinger coefficients exist for all v > 0 and the same
condition
v<3/2, {38

J

as for the matrix slements.

In view of the foregoing, we consider that, for 0 < v < 3/2, we can take
(4) or (7) as the even state functions in the discrete spectrum. The behavicr
of the matrix elements and the Raylelgh-3chroedinger coefficients is then analo-
gous to the behavior for the functions (4). The use of (3) as the even func-
tions [2] is undesirable because of the two-fold degeneracy in parity. These
functions must undoubtedly be taken as the odd funetions for all v. The func-
ticns can be continued evenly only fer v > 3/2, in which case there is no Ray-
leigh-Schroedinger perturbation ftheory for the states (4) and (7). Te¢ justify
this cholce (a = n/2, v 2 3/2) and to determine the upper limit of v for which
the Rayleigh-Schroedinger perturbaticn theory 1s still valid, we must carry out
e?gimat?%)analogous to (28}, (29), (30), and (38) in the even case (0<r<o,
P (F) = {r)).

The final result is that instead of (38) we now have

j—t
[



v< 24 (1+5)-1, (39)

i.e., all the Rayleigh-8chroedinger coefficients exist for v < 2. The fact that
the Rayleigh-Schroedinger pertupbation thecry is not vallid for v =2 2 is not un-
sxpected because such a strong slngularity produces a fall on the center (bottom
of the well}) Tor A < 0 [5, p. 1i45]. However, for v < 3, the energy levels can
be expanded into & series in powers of A by methods other than the Rayleigh-
Schroedinger perturbation theory [8]. The energy levels are analytic in A in
the even case as well, when 3l2<v<2 v 2| <1/4,

We note that, as the pertu bation parameter v passes through the boundary
values v = 3/2, v = 2, the exact even and odd functions change thelr behavior
(3), (4) for x = 0. The derivative of the even function (4) ceases to be sguare
integrable at v = 3/2. For the|odd function, we have instead of (3) the expres-
sion W(x)ooxvtexp(—2VA(v—2)~lx~tB2, x>+0, v>2 a>0) [5, p. 215].

. ]

Since our main conclusions, i.e., the existence of the matrix elements and
the Rayleigh-Schroedinger coefficlients for v < 3/2 in the even case and the
existence ol the Rayleigh-Schroedinger coefficients for v < 2 1n the odd case,
is independent of the quantity > 0, the conclusions must alsc be valid for
any smooth even confining potential. This amounts to a rehabilitation (contrary
to [9]) of perturbation theory ror weakly singular perturbations (1 £ v < 3/2)
of the even states in the dilscrete spectrum, sc¢ that we may lock upon this quan-
tum-mechanical problem as a model of quantum field theory in which Feynman dia-
grams correspond to the Rayleigh-Schroedinger series.
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