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Exact dynamic theories induced by the subdivision of the variables in 
the original field theory into a background and a finite dynamic 
part are constructed. They exhibit a certain nonequivalence under 
different cases of the subidivied variables. Gauge invariance that 
follows from displacements in 4-space and dynamic theories in GTR are 
discussed. 

The subdivision of the field variables in some initial field theory into 
a background and a dynamic part has a long history. In gravitation, it has 
frequently been used since the publication of [l] to solve classical relativ
istic problems and to quantize the weak gravitational field. We are not able 
to reproduce here the extensive bibliography on this subject; a partial listing 
can be found in [2]. 

The principle used to construct a dynamic theory, i.e., a theory of a 
dynamic field on a given background of the same nature, is valid for any theory 
describing a single field or several fields, and presented in either second or 

'first order formalisms. However, dynamic theories are probably most effective 
in gravitation because the background gravitational field can be regarded as 
4-space that serves as the arena for the action of dynamic gravitational fields., 
This means that such fields can be discussed in the same way as nongravitational 
fields, e.g., on a background of t,he Schwarzschild solution or cosmologic models 
[3]. Dynamic theories are necessary in the quantization of t>-ie gravitational 
field in the semiclassical approximation. Effective action and the conformal 
anomaly are discussed in [4]. 

We shall not assume that the dynamic field is small and will construct a 
dynamic theory exactly and independently of whether or not it can be specified 
in a closed form (see [S-7°] in relation to gravitation) or only in the form of 
the sum of an infinite power serie'S in terms of the dynamic variables. This 
type of construction is reasonable when it is possible to isolate some smooth 
or slowly varying part of the field as the background, and when the dynamic 
theory describes the entire range of phenomena covered by the original theory 
with the same degree of completeness. For example, 'the closed Friedmann uni
verse is satisfactorily described by the dynamic theory [8]. 

In this paper, we shall introduce a series of statements in relation to 
dynamic theories generally, and will illustrate them bY the theory of the gravi
tational field or a system of interacting gravitational and matter fields [7]. 

In section 1, we consider the properties of an arbitrary theory (not nec
essarily dynamic) in relation to the redefinition of the field variables. The 
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transformed theGry will be fourid to be equivalent to the original theory. 
I 
i 

In section 2, we determinl the dynamic Lag~angian and obtain the dynamic 
equations. We also establish the "background current" which corresponds to 
the variation of the dynamic L grangian with respect to the background variables. 
Dynamic theories obtained for ifferent cases of the field variables turn out 
to be nonequivalent in a certa~n sense. In gravitation on a flat 4-background, 
the eriergy-momentum tensors di fer by the divergence of the "superpotential" 
(in the traditional terminolog• ). The superpotential is mentioned in [9] in 
the quadratic approximation. ~e shall show that the exact theory contains terms 
that lead to the superpotentiall. 

In section 3, we investigate the inv~riance of dynamic theories of gravi
tational and matter fields and it heir gauge transformations induced by finite 
displacements of 4-space. 'I 

1. Redefinition of fields. Consider a set of fields~ and Pa where the 
indices A and a correspond to a~bitrary and generally different transformation 
properties. Suppose the field ~ is an auxiliary, "external" field relative to 
f. An example of this situatiop is provided by an arbitrary matter field im
bedded in an external metric. 1 

Thus, consider the followi~g action functional 

! S==Sd'xL(flP). ( 1) 

By varying (1), we obtain the e~uations of motion for the field f and the "ex-
ternal current": I 

I 

I 

(2) 

(3) 

When the field P is a metric tetsor, the external .current (3) is proportional 
to the energy-momentum tensor. 

' 

fA=f'(f, P) (4) 

We now introduce the folloling transformation of variables: 

and assume that this transforma ion has an inverse and that it does not contain 
the derivatives of the fields. I The transformation from variables with a par
ticular position of the indeces to variables with a different position of the 
indices is an example of this. 

1 ..... The equations of motion an the external curren;::; corresponding to tl1e field 
~ are related to the eauations f motion and the external current for tne field 
f' by - ! 

(5) 

'T[ =[.,;+ •I" ~] . 
aP• ar• 1-1<7.P> 

( 6) 

It is clear that the field theo~ies f, P and {, P are equivalent in the sense 
that the equations of motion (2l and (5) follow from one another and the ex
ternal currents (3) and (6) arelidentical when the equations of motion are the 
same. 
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These propositions are equally valid under a change of variables in dynamic 
heories. 

2. Dynamic theories. Let U"S first construct a "dynamic theory." Suppose 
hat a field or a set of fields denoted by QA can be described by the action 

S= l d'xL (Q). (7) 

et us specify the variables Q in some particular way (by the position of in
ices, the weight of tensorial densities, and so on). Next, let us subdivided 
.. into the background (QA) and dynamic ( q") parts in the sense of the folloiv-
ng exact equation: · · 

( 8 ) 

e now define exactly, without successive approximations, the dynamic Lagrangian 
f the field q: 

L•Y•(qi Q)-L(Q+q) -LO(Q) -L' (qi Q), 

ere 

L•(Q) ~L(Q), 

Ll ,,..~ 
~,.,- A" 

. &1 

(9) 

(10) 

(11) 

e backgrounq quantities now play the same part as the field P in section 1. 

To within the divergence, the original Lagrarigian L(Q + q) can.be repre
nted by a generalized Taylor series involving Lagrange derivatives with respect 
the background quant;J.ties (see, forexample, [10]). Actually, (10) and (11) 

e the zero and first order terms of this series, respectively. 

The background equations of motion follow from (10): 

Mo• aQ" :..0. . ( 12) 

note that the coefficient of qA in (11) is the left hand side of (12), but 

e background equations of ~otion cannot be taken into account in Ldyn prior 
the variation .. 

By varying (9) with respect to q and Q, we obtain the dynamic equations of 
t ion and the "backgrour..d current" analogous to the rrb~ckground current" in 
) . We now use the obvious property aL/dQ-=-dL/aq of the above subdivision, and 
ite ~he ~quat!ons of ~otion and the background current in She form 

dL ayn il -aq:<= aQ" [L(Q+q)-L'(Q)]=O, ( 13) 

aLo.yn 41.c:tyn a 3L• 
~. = 6Q" ~ 6ir' - 6Q" qB 6Q" '. ( 14·) 

shall assume from now on that the Lagrange derivative acts from the right on 
e entire expression. 

It is clear from (13) and (lll) that the background current is the "source" 
the linear part of the equations of motion, which can be rewritten in the form 

a a · 
qa L' ~ (15') 6Q" 6Q8 .=-·:..· -

:s 



Once we have 
theory of a given 
ratic term in the 

the dynamic th 
order. The fi 
expansion of t 

ory, we can always construct an approximate 
st term of the expansion in Ldyn is the ouad-
e ·original Lagrangian: = 

1 3 3 -qA--qB-L• .. 
2 6QA 6q8 (16) L• 

' 
-· I 

Since the Lagrange derivatives ccpmmute, we can vary (16) to obtain the linear 
equations of motion for the fiel~ q and the background current that is quadratic 
in q: I 

(i7) 

(:;. 8 ) 

These two equations can also be Jbtained in a different way, i.e., as, respec
tively, the linear and quadratic !parts of the expansion of the equations of 
motion that follow directly from~1 the original Lagrangian (7). 

We shall now establish the ifferences that arise in the dynamic Lagrangians 
and the corresponding equations f motion and background currents when two dy
namic series are constructed for a different case of the independent variables 
in the action (7). Suppose that · 

Cl1=Qt+qt, (19) 

(20) 

J 
cz~=ct.+t.. 

where, of course, ct.-ct.cQf). We ow write out 
ding to the subdivisions (19) an

1 

(20): 
the dynamic Lagrangians correspon-

Lf•"-L(r.+qt)-L0 (Qt}-qt w. L0, ( 21) 

L~··-Lr' 2+,f.}-L•(Qtl-<d ~ L•. (22) 

To compare (21) and (22), w express the former in terms of the dynamic 
variables q 1 • We represent q 2 b~I a series in terins of q 1 , and recall that Q_? = 
-"IQ'j• - ~2\ 1 - I 

' ' a<r. I r.- ~ qf+,.(q1fQ,), 

..,._...L ~ i ~'If+ 1 
21 1 1 I I 31 

( 2 3) 

Substituting (_23) in {22), and using the 
difference between (21) and (22): 

~ 3 3 
equation aQf ~ o. 3Qt', '!le ob'tain the 

the 

The equacions of motion 

following quantity when 

(24) 

~A- caQAt1aqs,i ·al'. 

thatl follow from L
1

dyn and L
2

dyn will differ 

expre:ssed in terms of the variables q 1 : 
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dvn Thus, the differences between the two subdivisions (19) and (20) in L · and 
the equations of motion of the field q are proportional to the background equa
tions of motion (12) and vanish when the latter are satisfied. 

We shall show that the difference (24) provides a contribution to the 
background current that does not vanish in the background equations of motion 
(12) or the equations of motion (13). Let us take the Lagrange derivative of 
(24) with respect to Q

1
, so that we obt.ain 

aNJ aB B .. 
. .,,, q, 6 Ldyn+ a~ 6 't•+ 6 AB a L• 

1'tA- --'f2B == :11""4. ---:ii° 2 . AM -.,,..JJ •""4 l" .tJ"\ll • 

. aQf .,.,, a.,. · · ""' ""' ""' · ""' 
(25) 

The first and second terms on the right hand side of (25) are respectively pro
portional to the equations of motion and the background equations of motion, 
whereas the third term, in which B is independent of Q1 , is the linear part of 
the operator in the equations of motion, applied to. B. 

In the case· of "pure gravitation," described by the Hilbert action -(1/2)Y gR, 
the dynamic variables are often taken to be, for example, a~ .. rv, y er· , and 
so on. In the corresponding dynamic theories, the energy-momentum tensors are 
proportional to the background current. The difference between the energy-mo
mentum tensors of two dynamic theories, that is due to the third term in (25), 
is the double covariant divergence or, in the case of the flat 4-background, 
the divergence of the 3-index quantity called the superpotential. 

We emphasize that the emergence of the terms (25) is due precisely to the 
different choice.of the subdivided variables and the resulting difference be
tween the dynamic Lagrangians, which cannot be due to the simple redefinition 
of the variables q,-q,(tfdQ1) described in section 1. 

3. Gauge invariance. Consider a covariant theory of "gravitation" + "mat-
ter;" described by the single variable CZ. We shall show that this theory and 
the corresponding dynamic theory exhibit a specific form of gauge invariance. 

Let us transform the coordinates as follows: 

x'« = r (x) = [exp ( ;~ (x) a:~ ) J .>:«, (26) 

where "exp" is regarded as a differential operator and ~ is a vector that, in 
general, is ·not small. 

The standard operation used to evaluate the Lie derivatives of geometric 
objects consists of the transformation (26) of the coordinate system, followed 
by return to the point having the value x in the new system x'. When this oper
ation is performed exactly (.and not in the first order in 0, it can be inter
preted as a finite displacement of space in the direction of the vector ~. The 
transformation Of any geometric Object Q then takes the form 

(27) 

where Ie, is the usual Lie differential [11]. 

Thus, transformations such as (26) generate transformations of the vari
ables such as (.27) in theories with action (1): 



f' =\=(exp 2\) f, P' =(exp 2'1)P. 
. i 

The action given by (1) is inva~iant under (28) because 

L (f' JP') =I:. (exp.ZJ fexp .:tiP) =;,,,P .:tiL (ff P) =L (f !P}-(s"L) ... + 
l , . 

+ 21 cs~<s"LJ .• >.~i·"• . . · 
i . . . 

(28) 

(29) 

i.e., the terms in the infinit. e'rseries, after the second term, form the complete 
divergence. Here and hencefort we use the fact that the operator exp.$!', commutes 
with the function symbol, which can readily be verified. 

The equations of motion an~ the background currents are "gauge covariant," 
i.e., they transform into themtlves: 

BL 6L BL 6L 6f exp.:t16f• w"'exp.Zeap-· 

In the dynamic theory wit~' the subdivision defined by (8), the gauge trans
formations will be applied to t e dynamic variables. Let 

=q+ (exp 2'1-1) (Q+q). ( 30) 

This means that we have the folh~wing correspondence with the original theory: 
the quantities Q.-Q+q and Q'=·Qfq' are related by the transformation (28). 

I 
We shall now examine how ohr set of dynamic quantities transforms under 

(30). For LdYn, we have r 
. Ld'"(q') ~Ldyn (q} + (exp.:t,-1) L (Q+q)-

-[(exp~1- J)(Q" + <r'))~L'(Q), (31) 

where the second term is the diLergence (compare this with (29)) and the third 
term vanishes when the backgrouhd equations of motion are satisfied. Thus, the 
dynamic action ~s gauge invaria~.t. 

After subs ti tu ting (JO), t' find that the dynamic equat'ions of motion 

'5L dyn d"L dvn aLo 
6qA Zt &r' +(exp 21-l) 6Q", ( 32) 

' 
I 

become obviously "gauge covaria!t" when the background equations of motion are 
satisfied. 

The background current is ound to be 
I 

,L . 6Lo BL dyn 
.. A(q')=~A(q)"lj'(exp$1-l)w+(exp21-l~. 6qd -

- ~ [(exp.:t~-l)(Q"+qa)) ·~ L'. · . . 
I • . 

(33) 

Because of its structure (see <tsll, the background current is not gauge in
variant even when the backgrounql equations of motion and the dynamic, equations 
of motion that appear in the seaond and third terms of (33) are satisfied. The 
fourth term in (33) provides a ~ontribution that does not vanish on the equa
tions of motion or the backgroutd equations of motion. 

I 
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At first .sight it would appear that (32), (33) and (5), (6) are in conflict. 
We recall that the latter relate the equations of motion and background current 
obtained directly by the transformation of thei"r variables to the equations of 
motion and background current derived from the transformed Lagrangian. Here we 
directly transform only the equations of motion and the background current them
selves. On the other hand, if we determine these quantities from the transformed 
Ldyn (31), we find that they correspond exactly to (5), (6). We emphasize that, 
in (32) and (33), we are dealing with form-invariance, i.e., invariance of the 
form of the function of our dynamic variables. 

The authors are grateful to L. P. Grishchuk for useful discussions and a 
number of constructive criticisms. 
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