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Exact dynamic theories induced by the subdivision of the variakles in
the original field theory into a background and a finite dynamic
rart are constructed. They exhibit a certaln noneguivalence under
different cases of the subidivied wvariables. Gauge invariance that
follows from displacements in Y-space and dynamie theories in GTR are
discussed.

The subdivision of the field variables in some initial field theory into
a background and a dynamic part has a long history. In gravitation, it has
frequently been used since the publication of [1] to sclve classical relativ-
1stic problems and to gquantize the weak gravitaticnal field. We are not sble
to reproduce here the extensive bibliography on this subject; a partial listing
can be found in [2].

The prineciple used to construet a dynamice theory, i.z., a theory cf =z
dynamic field on a given background of the same nature, 1s valid for any theory
describing a single field or several fields, and presented in either second or
first order formalisms. However, dynamic theories are prchably most effective
in gravitation because the background gravitational field can be regarded as
4-space that serves as the arensa for the action of dynamic gravitational fields. .
This means that such fields can be discussed in the same way as nongravitational
f*elds, 2.2., on a background of the Schwarzschild solution or cosmologic models
LJJ. Dynamic theories are necessary in the gquantization of the gravitational

l1eld In fthe semiclasgsical approximation. Effective action and the conformal
anomaly are discussed in [4].

We shall not assume that the dynamic field is small and will construct a
dynamic thecry exactly and independently of whether or not it can be specified
in a closed form (see [5-T] in relation %o-gravitation) or only inthe form of
the sum of an infinite power series in fterms of the dynamic wvariables. This
type of construction 1s reastnable when 1t 1s possible fc isolate some smooth
or slowly varying pvart of the fleld as the background, and when the dynamic
theory describes the entire range of phenomena covered by the origlnal theory
with the same degree of completeness. For example, the closed Friedmann uni-
verse 1s satisfactorily described by the dynamic theory [8].

In this paper, we shall intfoduce a series of statements in relaticn to
dynamic theories generally, and will illustrate them by the theory of the gravi-
tational field or a system of interacting gravitational and matter fields [7].

In section 1, we conslder the properties of an arbiltrary theory (not nec-
essarlly dynamic) In relation t¢ the vedefinltion of the field variables, The
@ 1987 by Allerton Press, In¢.
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These propositions are equally vaiid under a change cf variables in dynamic
hecries,

2. Dynamic theories. Let us first construct a "dynamic theory." Suppose
hat a field or a set of fields denoted by @4 can be described by the action

S={d*xL(Q). {73

et us specify the variables € 1in some particular way (by the position of in-
ices, the weight of tensorial densities, and so on). Next, et us sudeViaed
4 into the background (Q4) and dynamic {¢4) parts in the sense of the fell cwW-
ng exact equation:

qa=Qrteh (3)

e now deflne exactly, without successive approximations, the dynam¢c Lagrangian
f the field q:

L™(g]Q) =L(Q+9) — L9(Q) — L' (4] Q). (9)
ere . - |
19(Q) =L(Q), (10)
) Lx,.qA_‘sﬂ'_ (11)

e background quantities now play the same part as the fleld P in section 1.

To within the divergence, the original Lagrangian L(Q + g) can.be repre-
nted by a generalized Taylor seriles Involving Lagrange derivatlives wlth respect
the background gquantities (see, forexample, [101). A4ectually, (10) and (11)

e the zerc and first order terms of thils series, respectively.

The background equatiocons of motion follow from (10):

Sl
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- 34 i (12)
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shall assume from now on that the Lagrange derivative acts from the right on
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It is clear from (13) and (1&) that the background current is the "sourcs"
the linear part of the equations of motion, which c¢an be rewritten in the form
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Thus, the differences between the two subdivisions (19) and (20} in Ldyn and
the equations of motion of the field q are proportional to the background equa-
tions of motion (12) and vanish when the latter are gatisfied.

We shall show that the difference (24) provides a contributicn to the
background current that does not vanish iIn the background equaticns of moticn
(12) or the equations of motion (13). Let us take the Lagrange derivative of
(24) with respect to Ql’ so that we obtain

- an 393 gva p? § - 3 8 i
T;A 6Q,4123=6Q',“ qBL 5QA 6QB Wﬂ GQBLG | (25}

The first and second terms on the right hand side of (25) are respectively pro-
pertional to the equations of motion and the background equations of motion,

whereas the third term, in whilch B 1s independent of Ql, is the linear part of
the operator in the equaticns of motion, applied to 8.

L+

In the case of "pure gravitation," described by the Hilbert action =—{(1/2)V —gR,
the dynamic variables are often taken to be, for example, &uw & V—gg¥, and
so on. In the corresponding dynamic theories, the energy-momentum tensors are
proportional to the background current. The difference between the energy-mo-
mentum tenscrs of two dynamic thecries, that is due to the third term in (25),
is the double covariant divergence or, 1in the case of the flat 4. ~-background,
the divergence of the 3-index gquantity called the superpotential.

We emphasize that the emergence of the terms (25) is due precisely to the
different cholce of the subdivided varlables and the resulting difference be-
tween the dynamic Lagrangians, which cannot be due to the simple redefinition

of the varlables qe=qa(q1|Q) described 1n section 1.

3. Gauge invariance. Consider a covariant theory of "gravitation” + "mat-
ter," described by the single variable @. We shall show that this theory and
the corresponding dynamic theory exhiblt a specific form of gauge 1nwariance.

Let us transform the cocrdinates as follows:
a
x'a=f“(x)=[exp(§ﬂ(x)-a—3-”x“. (28)

where "exp" 1s regarded as a differential operator and £ is a vector that, in
g=neral, is not small.

The standard operation used to evaluate the Lie derivatives of geometric
objects consists of the transformation (26) of the coordinate system, followed
by return to the point having the value X in the new system x'. When this oper-
ation is performed exactly (and not in the [irst order in &), it can be inter-
preted as a finite displacement of space in the direction of the vector Z. The
transformation of any geometric ¢bjecet §§ then takes the form

X () =(e LI = QD) + 2R+ L 2 (LD + ..., (27)
where £: is the usual Lie differe=ntial {11].

Thus, transformations such as (26) generate transformations of the vari-
ables such as (27) in theories with action (1):
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f'==(exp L}f, P'=(exp Z)P. (28)
The action éiven by (1) is invariant under (28) because
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At first sight it would appear that (32), (33) and (5), (6) are in conflict.
We recall that the latter relate the eguations of motion and background current
obtained directly by the transformation of their variables to the equations of
motion and background current derived from the transformed Lagrangian, Here we
directly transform cnly the equatiocns of motion and the background current them-
selves. On the other hand, 1f we determine these quantities from the transformed

Ld:m (31), we find that they correspond exactly to (5), (6). We emphasize that,
in (32) and {(33), we are dealing with form-invariance, i.e,.,, invariance of the
form of the function of ocur dynamic variables.

The authors are grateful tec L. P. Grishchuk for useful discussiong and a
number of constructive criticisms. '
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