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A method is_described for calculating the strength functions for giant
multipole resonances (GMR)., The fragmentation of particle and hole
excitations is taken into account, as is the coupling of the GMR to
the continuum. The method is used to calculate the photoabsorption

cross section of the nucleus 120.
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1. INTRODUCTION

One -0f the main problems 1n the deftailed escription of giant multipole
resonances (GMR} is the problem of the coupling between the entrance (1lplh)
states and the 2pZh, 3p3h, ... nuclear excitations. The ccupling of the lplh-
states to the more complex configurations leads to the three different types
of dampilng of normal vibrations, shown schematlcally in Fig. 1, namely, particle
fragmentation (a), hole fragmentation (b), and renormalization of the particle-
hole interaction (c¢). The firs:t two processes have been investigated experi-
mentally in one-nucleon transfer reactions. 3pectrosceople information obtained
from these reactions can be used directly to calculate the structure and the
decay parameters of GMR, in the same way as in the semimicroscopic vibrational
model (SVM) [1-5]. In particular, it is shown in [5] how the random phase ap-
proximation (RPA) must be modified to take into account process (b). The par-
ticle fragmentation process can be taken into account in a similar way.

In this paper, we consider the evaluation of the GME strength functions
using the SVM theory. In addition to fragmentation processes such as {(z)} and
(b), we also take into account the coupling of entrance states to the continuum,
The method that we empley 1s close to that used in the quasirarticle-vhconen
model [6]. However, in contrast to [£], the basis wave functions are taken %o
be the 1nitial shell configurations rather than calculated phonon states. This
enables us to express the GMR strength function in fterms of quantities that can
be estimated from spectrosccopic data.

2. DESCRIPTION QF THE MODEL

Consider the sigenstates |¥:> of the nuclear Hamiltonian H, excited by
some =2xternal field F(I')of multipolarity TI={r Trl. We shall follow the RPA
theory for nuclei with unfilled shells, formulated in [7], and assume that these
states can be written in the form
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Fig. 1. " Diagrams 1llustrating the

damping of normal vibratlions. Wavy
lines represent one-phoncn excita-

tion.
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where Qi+ 1s the operator repressnting the creation of a phonon with excitation
SNergy Wy, X, ¥s U, V are the coefficlents in the expansion of the phonon over

the basls states, |We> is the ground state of the nucleus {(assuming for simpli-

city that Jy = Ty = 0 inthe ground state), Ak+ and'Ak are the creation and an-

nihilaticn operators for the entrance states in the field F(I'), 30 that
(Wi | F () { Wo)=e (¥ 1| F(T) [ Wo)

G; and G& are the creation and annihllation operators for states into which

the state Att|¥e> decays, and the hat over the state index represents the trans-
formation of a particle into a hole [87.

The states AF|¥), Agl¥).  &=1,2,... form the basis for the normal vibrations

of the nucleus, They can be the Iplh-excitations [1] or the more complex states
(1pilh + 2p2h + ...) if fragmentation effects are taken into account in the basis
{AF| %), Apl¥e)}. Some of these states have a particle in the continnum. At this
stage of our calculation, we shall suppose that the continuum has been discre-
tized in some way. This is not a significant restriction because discretization
can be apandoned in the final stage of our calculation (see seection 3).

The states G;I?J. Gal?d correspond te the configurations {(2p2h + 3p3h + ...).
For processes a) and b) of Fig. 1, we may suppoese that different states Awt|Wo>,
k=1, 2, ... decay to the noncrossing groups of states {Ga]|¥)} {GHl¥d} ... . The
Afr?g-+agr?g transitions are then used to describe the spreading of the 1plh-
states that was not taken into account in the basis pﬂwqu Agl ¥} (for example,
because of the lack of spectroscopic data, as is the case Tor the quasidiscrete
particle excitations). We shall now assume that the states G{]?ﬁ have bpeen
chosen so that they are the eigenstates of the Hamiltonian H in the absence of
the coupling to the states Agt|{¥o>.
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Substituting (1) in the equation of motion
[H, Q] | ¥o>=w| Fo>
~and using the approximations adepted in SVM [1,5], we cbtain
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where Kk 13 a constant characterizing the coupling of the field F(I) to the cor-
responding nuclear moment (multipole-multipcle constant), My=(F|d:F(T)|¥) is
the amplitude for the transition |We>—Ast[¥:> under the influence of the field -
F(T) (expressed iy terms of the one-particle matrix elements of the operator
F(T)Y and the spectroscopic factors of states populated in the one-nucleon trans—
fer reacticns [1,5]), i ws, are the excitation energies of the states Af!?& and
Gﬁr@a, Vs, -Kﬁ%phv [¥) 1s the matrix element describing the coupling of the
states A;ﬂ!h>-and %), V is the effectlve interaction, and ¢ = *1 is a con-
stant characterizing tlie properties of the operator F(I} under the particle-
hole conjugation [8].

The amplitude for the transition [We>—=|{¥:i> produced by the field F @) can
be written in the form [1,5]:

(’Ft IFM) )= Z My (2 (B)—cp ()

Substituting {(2) into this expression, we obtain the secular equatlon describing
the excltation energies w, of the states [Fi>
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The transition amplitude ordsruv{q%> is determined by the norma*lzatlon condi-
tion .

(3)
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Substituting (2) into this,expression, we obtain

(T F(D)|T1 =-“6—D(m}‘_ .
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3. DETERHINATION OF THE STRENGTH FUNCTION

The propertiss of the individual states [¥> are very laboricus to deter-
mine bhecause the number of such states 1s in general very large. Lt is possible,
hcwever, to take an average over the states |¥i>. Let us introcduce the strength
function for the F(I)-excitation of a nucleus, namely,

SE=E y FoE—nd

e
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is the oscillator strength of the transition |¥>--|¥:> produced by the field
F(I),

' i A
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is the stfength function [8], and A is the interval over which the average 1is
evaluated. :

The function S(E) describes the energy distribution of the oscillator
strengths of the F(I)-transitions. It 1s important to note that the averaging
interval A has no effect cn the integrated propertiles of this distribution if
the following conditions 1is satlisfied:

AnM,32, {5)

It follows from (3} and (4) that £y is the residue of the function M{w)=o/lxd(w)}
at the pole Wy - Hence the strength funetlon c¢an be written as a centour inte-
gral in the complex plane [8,9]. By evaluating this integral, we obtain
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Substituting (3) in this expression, and using some simple simplifications, we
obtain
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The qqantities
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describe, respectively, the width and the energy shift of the state Aar{¥e> due
to its coupling to the states G*lqﬁ) [8]. For process (a) or (b) of Fig., 1, they
can be estimated from spectroscopic data.

It 1s c¢lear from (7) and (8) that the functions A(E}, B(E) have no singu-
larities when A # 0., This means that summation over the discrete set of "con-
tinuum" states can be replaced by integration over the continuum for these func-
tions with & # 0.

When (6) is used in practice, it 1s important to remember that it was ob-
tained in an approximation in which only the "particle" and "heole" mechanisms
were taken into account in the damping of normal vibratlons. Of course, this
restricts the range of 1ts applicability. For example, it is hardly suitable
for the description of GMR in the region of intermediate-mass vibrational nu-
clei for which there are strong coherent effects (see diagram (c) of Fig. 1)
due. to the ccocupling:.between charge and surface vibraticons of the nucleus. How-
ever, (6) may be useful in the descripticn of GMR of light nuclel (A 5 40) for
which the coupling between the charge and surface vibrations appears to be much
weaker. It 1s also important to ncote that the restrictions that we have imposed
have enabled us to rarametrize the strength functions in terms of the quantities
(Ma?, 0, Tn Awe) that can be estimated from spectroscopilce data.

4. APPLICATION TO THE PHOTODISINTEGRATION OF 2¢

To check the validity of the assumptions made in the derivation of (6), w=
have used it to calculate the photoabsorption cross section of '2C. This cross
sectlion is related to the strength funeticn for the giant dipole resonance (GDR)
by

mma=””8m

The calculation was performed as follows. The one-~particle wave functions were
calculated feor the Woods~Saxon pctential whose geometric parameters were taken
from [10], and whose depth and spin-orbital coupling constant was deduced from
a fit to the spectroscopic data for each j = 1 + 1/2 douplet [11].

The entrance states AF|Woe>, k=1, 2,.,.. were taken to be states of the form
"particle above a finite nucleus in a particular state"™ [5]. All final states
over which the holes(lpuz)~t(lpsp)~'and (lsi2)™ were spread were taken into account,
The experimental strength function [12] was substituted for the (Isiz)™! hole in
(6): 1t was assumed that the square of the matrix element ME=(¥jA:F (T} |¥)? for
the lsye—+lpipse transitions was distributed over the enersy Wy in accordance with
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Fig. 2. Photeabsorption cross section
of the nucleus '2C. Points) experi-
mental [14]; solid curve) calculated.

the one-hole strength function. The width Pk = & MeV was then used to descrite

the coupling of the high-energy one-particle rescnance 1d3/2 to more_compliéated
configurations. The checsen Fk falls into the energy range 5-10 MeV given by the
optical model [10,13]. The small width Ty = 0.5 MeV was also introduced for

the guasidiscrete state 1d5/2. All the quantities Amk were assumed zero., The

caleculation was carried out with the dipole-dipole constant x reported in [1].
The averaging interval A was assumed to be 0.5 MeV.

* The results of this caliculation are shown in Fig. 2. As c¢an be seen, the
two photoabscorption peaks at EY = 22.5 and 25-27 MeV are in agreement with ex-

perimental data (see alsc the calculations reported in [1,7,15,16]). The first
peak is mostly due to the configuration Wims (A—I){ldsz}' (the index i = 0,1, 2,
... labels states of the final nucleus, beginning with the ground state, in order
of increasing energy (whereas the second peak corresponds to the configuration
Yim1 (A—1) (1dse)'. It also contalns a contribution due to the configuration Wiws(d -

- 1){ldsn)!, that 1s responsible for the narrow peak at E; = 26 MeV. The main

contrivuticn to the photoabsorption cross section at E x 30 MeV 15 dues to lsig—>
—=1pmae transitions, O©Cn the whole, the calculations reproduce the size and posi-
tion of the experimental resonances quite well, but the calculated cross section
i3 too high in the region of the second peak. An analogous result was previously
reported in [1,7] in the 1lp-lh approximation. This discrepancy is a measure of
coherent processes such as (c) of Fig. 1 that have not been taken into account

in the present calculation.
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