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An analysis 1s given of the diffraction cf acoustic waves by a rigid-
half plane parallel to the free surface of a stratified compressible
liguid. The solution is given in the form of an integral whose asymp-
totle behavior in the far-fleld zone is examined.

We investigate the scattering of plane waves by the edge of a2 half-plane
in a stratified compressible liquid, when the plane is parallel to the free
surface of the liquid.

By a stratified liquid we mean a ligquid whose steady-state characteristics
(in the presert context, the density) vary only aleng & chosen particular di-
rection. Studies of the dynamics of waves in different inhomogeneous (including
stratified) liquids are of interest in connection with problems in geophysics,
oceanclogy, atmespheric physics, applications of cryogenic ligquids in technology,
pollution of the environment, and a number of other questions [1],

1. Let us consider the two-dimensional motion of a stratified ligquid in
a uniform gravitaticnal field relative to a Carteslan frame x0z in which the
Oz axis peoints agalnst the conatant gravitational acceleration g = (3, -g).

Small oscillations of the ligquid relative to the stationary state, which
we shall assume toc be adiabatic and have the time dependence expl{~—iaf), will be
described by the following set of equations:

— i0pyV +VP=0g; —iap+(VPy ¥)+podivy=0

7 P : (1la)
— fwp -+ (9, V) =— (—iop -+ (VPy V)

whers v=(o, %), p, and p are the amplitudes of the particle veloclty vector, den-

sity perturbation, and dynamic pressure, respectively, and po(z) and po(z) are

the stationary distributions of density and pressure, related by VPe=pg, The
Tirst two eguations in (la) describe the conservation of the momentum of the
particles cf the liquid, whereas the third egquation i1s the equation of conti-
nuity. The last equation is the equation of state. In accordance with the
ahove definiticn of a stratified liquid, we put pe(2)=po(0)e~¥s, 3>0, and consider
that B8 and ¢ (the adiabatic veloelty of sound) are constants in the approxima-
tion that we have adopted.

If we substitute Wwpe®, we can reduce {la) to the single equation [2]
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where mw=f—odd/¢ and we?=2Bg—gc2. Stratification is said to be stable when m02 > 0,
in whidh case |[me]|<B- :

We note that we have chosen the case of acoustic oscillations, i.e., a2 > 0,

2 2 <0, k° < 0 for which

k™ » 0, and will not consider internal waves for which a
plane-wave solutions can also be found [2].

2. Suppose the liquid occupies the half-space z < h and contains, parallel
to its free surface z = h at a depth h > 0, a rigld half-plane T=={z=0, x<0}. The
wave [={0<2z<], x<0} 13 incident on the edge of T from the region

T, ==gihor (;:hvuz;p, %) .

where kymay B4yl, and v, is the minimum positive real root of the equaticn
Ha Y 0 , :

e e

On the free surface z = h we have the dynamic condition p(x, B)=%{x)ps(h), where
C(x)=(—1/i@)v:{x, B} is the displacement above the free surface, In terms of the
function ¥(x, z), this condition takes the Form (§/0z+p)¥|zmn=0 (see (2))}. Since
the half-plane I' is impermeable, the function ¥ must satisfy the condition
(0/0z+po) ¥ | r=0.,

If in the region 0 < z < h, the resultant wave field ¥y is written in the
form WZ = WO + ¥, whereas in the region z < 0, the resultant field is denoted
by ¥, then the problem of diffraction of WO by the =dge of T can be formulated

as follows: we geek the function ¥(x, z) defined in {2<h\T that satisfies equa-
tion (1) for z # 0, subject to the above boundary conditions and the following
consequences of the requirement of continuity of dynamic pressure and the compo-
nent v, for z = G, x > 0:

Tz, + =T (x; —0)=—e'*
and
B i 0= 2Y (. 0) = jgiber
a‘ (xl +0) az (xv 0)"'1"'08 *

On the edge (0, 0), we impose the condltilon %(x,0i0)=0_(x-‘ﬂ),_x-(}io, which

el

follows frcom the absence of additlonal sources on the edge of T. This is equi-
valent to saying that the total energy flux through any surface surrounding the
edge must be zero.



The conditions.at 'infinity will be formuiated by demanding that waves pro-
duced as a result of diffraction transport energy to infinity.

3. The above problem will now be sclved by the Wiener-Hopf method in the
Jones interpretation. A detailed description of this can be found in [3].

The soluticn has the form

‘I’(x, 2)= j'(D (v, 2) a1+ —iasdy 4 (0,(a, 2)evizl—iaxde, ()

—_—

where y=v{q);(lla)]/a‘—k_“a’, with the chosen branch y(0) = -1k, v{a) » = as lo| + =
on the real axis 1n the plane of a. The cut used to define this branch joins
the branch points gk via an infinitely distant point along the rays [ak+i0, gk+ticc)
ang [—ak—i0, —ak—im), The Integrals in (4) are evaluated along the rezl axis, by-

passﬁng the positive gingularities below and the negative singularities above.
Il’](),

0, (0, )=C@WR(®), Oyte, =D (@) (1— ;*;*) x@),

® =ﬂ_4 L, (w) M (a) £
(@) (k) G @tr
where .

*‘i, M(a)=-v+n. My {a) =1+ py,

R (G):-_-.-
G@)(w—mdwh+wm—f)m”.x@) VLZ<0

M ()G (=) .
M (@) & into

the product L+(u)L_Cu) where L+(a) and L_(a) are analytic and nonzero in the
upper and lower half planes, respectively. The factorization is carried out

on the basis of the factorilzation of functions such as & M{a), G(z) of [3,4,5],
respectively.

The-functions'L+(u} are obtalned by factoriziﬁg the function L0ﬂ==

'The final result is

-  _ - _ My (3) ivh gv3
L@=Lo(=a) L@=2S exp (T 1n 2E |
o " - et (5)

L N SOy U O L. = Z. nme
- (1o )T (- £ 1 (12
where we have taken the prineipal branch of the function Ine=inla|+iarge, —n/2<arga<
<3nf2, CO is the Euler constant, G(0)mchkh-shkh, and oam, m=0, 1, 2... are the zeros
of the functicn G(o) lying in the range {0<arga<n} cn the plane of the complex
variable a.

The factorizations M{a)=Mi(a)M-(a), My(a) =M (a)Mo{a) are performed by analcgy
with [3], and we merely note.that the form of the factorization depends on the
signs of u and Hye

The function G(a) has only simple zeros ta,, which form a denumerable set

without limit points, with the exception of an infinitely distant point. The
zerogs of G{(a) are fcund after the solution of (3) has been carried out in the
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complex planef for each palr of roots ¢f (3) there is & pair of zeros of G(a)d,
to s that ars related with T by a*{ym?+k?)=an?. The roots +am are real and posi-

tive for m = 0, 1, ..., n and purely imaginary with positive imaginary part for
m=n+l, n+2, .... If we number them in order of increasing modulus, we Ob-

tain the following asymptotic estimate that 1s valid form »n + 1:

. mma “d k34 1
=t { H8— o (mo—p k) 40 (7)) ©)
The number n depends on w and the parameters B, ¢, and is found from the rela-
tion gal<o¥el—-pi<y.l, where Vo 1 =1, 2, ... are the positive roots of yctgy=—B,

numbered in order of thelr increasing value. When «¥c?-82<p?®, it is assumed
that n = 0. '

4, We now turn to the analysis of the field described by (4). It will be
convenient to divide z < h inte 2 regions, namely, region I (sse section 2) and
={z<h\J . .

Region I may be referred to as the wavegulde region formed by the solid
wall T and the free surface of the liquild. When the wave fleld 1s analyzed 1n
region I, we write (4) in the form of a single integral and close the contour
of integration in the upper half-plane. The only poles of the resulting inte-
grand in the interior of the contour of integration are top, m =0, 1, 2, ... .

Applying the Cauchy theorem to the resulting integral, we can write the expres-
sion for ¥ in the form of 2 sum over the residues of the integrand, in which
case

=¥+ )] ) (chg (hmd) 4 p 2L ) e (7)
. Ml IR

where A(G)—L"(k') (=)

G (@) (k)

We note that all the terms under the summation sum have the significance
of the eigenwaves of the wavegulde. The first n + 1 of them (m =0, 1, ..., n)
are harmonic functions of x whereas all the others (m = n + 1, n + 2, ...) decay
sxponentially with decreasing x < 0. We note that n + 1 2 1, i.e,, there is at
Least one preopagating wave in x. :

A1l the terms in the sum in (7) are harmonic functions of z, except for
the first two (m = 0, 1) for —pueft/(pe—p)<l and the Tirst (m = 0) for —ppeht/(e—p)>1,
since yp, m = 2, 3, ... in the first case, cr m = 1, 2, ... in the second, are

ourely Iimaginary numbers.

The inequality —ppoehf(me—n)>>1 is satisfied when mh<l for o>fc and when
I+gh/e3>pei>] for w < wg . The inequality =—meph/{me—p)<l is satisfied when l<pt<l+

+ghfer for w > w_ and pohl4+gh/c? for w > Be. In these expressions w_ is the char-
acteristic frequency ol the waveguide, given Bby:

o5 ={f2gh— (1+BA) we®l (poh—1).

The series in (7) is absolutely convergent, together with all its deriva-
tives, for all 2z=(0,4) and x < O.

When the field in regicn II 18 analyzed, the first integral is conveniently
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taken in terms of polar coordinates (rl, 61) with the center at 0, = (G, C),
5 62) with the center at O2 (¢, 2h).
The angles el and 82 are measured, respectively, from the Ox and {z=2h, x>0} axes
in the anticlockwise direction.

and the second integral in terms of (r

Closing the contours of integration in 2 suitable way, taking into account
the residues of the integrands at the points ke xo=a V k’+po...m!c u..aVk’+|x =g ,
and carrying out the asymptotic estimate of the integrals over contours running
around cuts, we obtain the following expression for the resultant field in II:

Fr=4%(—m) s +x(— ) F.+ ¥ + ¥, (8)

where ¥, '::ﬁ?i—j-L+@JL+(xJE"““|““‘ ig the Kelvin wave under the half-plane T,
which is a progressive way propagating in the negative x direction with velocity

¢, and

j wn—-i%——l"'[_l_(ko)h(x)e—[uzl-{-mx
| :
is a surface wave propagating cver the free surface in the pecsitive direction of
X with the phase veloecity g/w.

The feollowling asymptotic expressions are valid for the terms W.d, jg=1,2
as k, rj - ool J

¥ =), sind Jalsingy} o /" on i 1+o( ))
@l rysind) CEICTIN ™ (1+o()

where a(8)= -ka’coseﬂp(a), <p{6)==Va‘cos’B+sm‘u

5. Let us now examine the wave field produced by diffracticn. In region
I, the diffraction fleld can be represented by (7) in terms of the set of wave-
guide eigenfunctions.

In region II, the field consists of two qualitatively different types of

terms. Terms belonging to the first type, 1.2., Wk and TS, are waves that de-~

crease exponentially from thelr maximum value on [ and the free surface with
distance from them, and progressive waves in X traveling away fromthe edge of

I'. The waves ¥, exist only for uy < 0, i.e., 8c¥g>1, and the waves ?S exist
only at a particular frequency: o?>fg.

The second type of term in (8) is represented by Tld and Wzd; Bacause of

N d
(43, ¥,

can be looked upon as a reflection of the fleld represented by Wld from
the free surface in acccordance with a particular law. The term Wld describes

a wave propagating away from the'edge of I with amplitude that decreases mostly
as (kn)~'? with distance from the edge, where surfaces of constant phase tend to
a family of ellipses elongated along Oz and centered on O1 as krl increases,

The terms ?ld and ?zd

We now note that.the problem of diffracticn of the plans wave P=—

are qualitatively similar to those in [2].

Mo (ko) |

. ) 27 (e}
- gt by the edge of T can be solved in precisely the same way. Here, lkl<ke

and 'v(k,)z'—(ifa)l/ Ba*—Fk; . Actually, the formulation of the problem remains the
same if the resultant field in the region {0<2<h} is denoted by ¥, whereas in
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the region {z<0} it is represented by Wy=Y+Wo+¥,R where ‘I’f#mgﬁ#ﬁw‘ is

the wave reflected from the half-plane T'. The resultant wave field in region I
is then given by (7), but now without the term V¥

5- Apart frcm the terms on
the right hand side of (3), the resultant field in fegion IT is also described
by the terms WO, Wt, and PR=—Hel) proyietiraei) (ygve reflected from the free

2¢ ()
surface,, combined strictly in accordance with the laws of geometric cptics.

From the mathematical point of view, the latter resuit 1s due to the fact that
the quantity ko is no longer related to the sclution of (3), and this means

that the integrands in (1) have 2 residue at this point.

The last of these problems 1s a typlecal ranging problem when a rectilinear
barrier i1s immersed in the liquid, parallel to its free surface.
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