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An analysis is given of the diffraction of acoustic waves by a rigid­
half plane parallel to the free surface of a stratified compressible 
liquid. The solution is given in the form of an integral whose asymp­
totic behavior in the far-field zone is examined. 

We investigate the scattering of plane waves by the edge of a half-plane 
in a stratified compressible liquid, when the plane is parallel to the free 
surface of the liquid, 

By a stratified liquid we mean a liquid whose steady-state characteristics 
(in the present context,· the density) vary only along a chosen particular di­
rection. Studies of the dynamics of waves in different inhomogeneous (including 
stratified) liquids are of interest in connection with problems in geophysics, 
oceanology, atmospheric physics, applications of cryogenic liquids in technology, 
pollution of the environment, and a number of other questions [l]. 

1. Let us consider the two-dimensional motion of a stratified liquid in 
a uniform gravitational field relative to a Cartesian frame xOz in which the 
Oz axis points against the constant gravitational acceleration g = (0, -g). 

Small oscillations of the liquid relative to the stationary state, which 
we shall assume to be adiabatic and have the time dependence exp(-'-irot), will be 
described by the following set of equations: 

- imp.v +VP= pg; -imp+ (VPo• v) +Po div v = 0 
. I . 

-imp+ (VPo• v) =-(-imp+ (VPo· v)) 
. c' 

(la) 

where v-(v., v,), p, and p are the amplitudes of the particle velocity vector, den­
sity perturbation, and dynamic pressure, respectively, and p 0 (z) and p 0 (z) are 

the stationary distributions of density and pressure, related byvp.-p.g. The 
·first two equations in (la) describe the conservation of the momentum of the 
particles of the liquid, whereas the third equation is the equation of conti­
nuity. The last equation is the equation of state. In accordance with the 
above definition of a stratified liquid, we put po(z)-po(O)r"•, ~>0, and consider 
that S and c (the adiabatic velocity of sound) are const.ants in the approxima­
tion that we have adopted. 

If we substitute '1!-pe••, we can reduce (la) to the single equation [2] 
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(1) 

where a2=o>2/(o>2-roo2), k2=ro2/c2-~2, and the quantities p, p, and v are related to '¥ by 

~ av 
t'1=-- --; 

iw ax 

. "'~ e-llz (I -a') ( d 
11o-~ . . iJz 

' 
u, =·~.,,,.. (-2_ + l'o)· 'l' 

im az . 

(2) 

where ll!J-~-wo2/g and iJJ02-2~g-g2/c•. 
in which case jµoj <~. 

Stratification is said to be stable when w0
2 > 0, 

We not·e that we have chosen the case of acoustic oscillations, 

k 2 
> 0, and will not consider internal waves for which a 2 < O, k2 < 

plane•wave solutions can also be found [2]. 

4 e a 2 
> o, ... . . ' 

0 for which 

2. Suppose the liquid occupies the half-space z < h and contains, parallel 
to its free surface z = h at a depth h > 0, a rigid half-plane r ... {z-0, x..;O). The 
wave /-{O<z<I, x..::O} is incident on the edge of r from the region 

'I', =e'..., (ch YoZ-l'o sh
1
:"). 

where k0 =aVk'+yL and Yo is the minimwn positive real root of the equation 

yctgy/t ( 3) 

On the free surface z = h we have the dynamic condition p(:c, h)-t(x)p0 (h), where 
;;(x) = (-1/iw)u,(z, h) is the displacement above the free surface. In terms of the 
function 'l'(x, z), this condition takes the form (o/az+µ)'Yl,_,,-o (see (2)). Since 
the half-plane r is impermeable, the function '¥ must satisfy the condition 
< ataz+µo) 'l' I r-o. 

If in the region 0 < z < h, the resultant wave field 'l'z is written in the 

form 'l'z = '¥ 0 + '¥, whereas in the region z < o, the resultant field is denoted 
by '¥, then the p·roblem of diffraction of '¥ 

0 
by the edge of r can be formulated 

as follows: we seek the function 'l'(x, z) defined in (z<h)',.f that satisfies equa­
tion (1) for z ~ O, subject to the above boundary conditions and the following 
consequences of the requirement of continuity of dynamic pressure and the compo­
nent v 2 for z = O, x > 0: 

'l'{x, +0)-'l'(x; -0)=-.,..... 

and 

av . . av 
a;- (z, +0)-a;-{x; -0) =f'oBa.z. 

On the edge (0, 0), we impose the condition : (x, 0±0)=0(.r112), x-0±0, which 

follows from the absence of additional sources on the edge of r. This is equi­
valent to saying that the total energy flux through any surface surrounding the 
edge must be zero. 
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The conditions.at 'infinity will be formulated by demanding that waves pro­
duced as a result of diffraction transport energy to infinity. 

3. The above problem will now be solved by the Wiener-Hopf method in the 
Jones interpretation. A detailed description of this can be found in [3]. 

The solution has the form 

. -
'!!(X, Z)= r <I>1(CI, z).rVl<-2hl-IOZda+ ~ <I>1(a, z).r'/•1-lozda;, ( 4) 

-~ -· 
where y=y(a)=(l/a)Va•-k•a•, with the chosen branch y(O) = -ik, y(a) + oo as !al + oo 

on the real axis in the plane of a. The cut us~d to define this branch joins 
the branch points ±ak via an infinitely distant point along the rays [ak+iO, ak+ioo) 
and (-ak-iO, -ak-ioo). The integrals in ( 4) are evaluated along the real axis, by­
passing the positive singularities below and the negative singularities above. 
In ( 4) , 

<I>,(a, z)::<I>(a)R(a), <I>,(a, z)=<I>(a) (1- __!!!!_ x(•l). 
Mo(<S) 

<I> (a)= --'-L. ( -k,) L. (e&) M (a)"'"' • 
2'< .. ~(a)- («+Ire) 

where 

R(a)= Y-i>, M(a)=y+µ, M~(a)=Y+f'o, 
- 1+,. 

.o (a) =(1&o-l'l ch yh + (µ1&o-rl sh yh • x<•> = { Q, z. < o, 
· , Y . I, z > 0. 

The functions L+ (.a) are obtained by factorizing the function L(a)=M.(a)G~") into 
- M~e 

the product L+(a)L_(a) where L+(a) and L_(a) are analytic and nonzero in the 

upper and lower half planes, respectively. The factorization is carried out 
on the basis of the factorization of functions such as e••, M(a), G.(cz) of [3,4,5], 
respectively. 

The final result is 

L (a) = L. (-a;), L. (a) = Mo+ (") exp {..!!!.. In "+ya -
M+(") " k!S 

• IC%/ll 

""'. •: (1-C,-lri i: ))YG(Ol(l+ :)n(1+ :J•--;;;;;;;-. -· 
( 5) 

where we have taken the principal branch of the function lna-lnial+iarga, -n/2<arga< 
<3n/2, c0 is the Euler constant, G(O)-chkh-shkh·, and ... ,m-0, 1,2: .. are the zeros 

of the function G (a) lying in the ral}ge {O<arga<n} on the plane of the complex 
variable a. 

The factorizations M(a)-M+(a)M-(11), Mo(<>)-Mo+(a)Mo-(a) are performed by analogy 
with [3], and we merely note.that the form of the factorization depends on the 
signs of µ and µ

0
• 

The function G(a) has only simple zeros ±am which form a denumerable set 

without limit points, with the exception of an infinitely distant point. The 
zeros of G(a) are found after the solution of (3) has been carried out in the 
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complex plane: for each pair of roots Of (3) there is a pair of zeros of G(a), 
±am' that are related with ym by a2(y,.2+k2)-<i,.2 • The roots +am are real and posi-

tive form= 0, 1, ... , n and purely imaginary with positive imaginary part for 
m = n +l, n +2, .... If we number them in order of increasing modulus, we ob-
tain the following asymptotic estimate that is valid form » n + 1: 

The number n depends on w and the parameters 
t ion g.•.;.,•/c2-fl2<Y•+12, where y n, n = 1, 2, ••• 

numbered in order of their increasing value. 
that n = O. 

( 6 ) 

a, c, and is found from the rela­
are the positive roots of yctgy--j3, 

When .,•/c2-fl2<Yi2 , it is assumed 

4. We now turn to the analysis of the field described by (4). It will be 
convenient to divide z < h into 2 regions, namely, region I (see section 2) and 
ll-{z<h}"'-J. 

Region I may be referred to as the waveguide region formed by the solid 
wall r and the free surface of the liquid. When the wave field is analyzed in 
region I, we write (4) in the form of a single integral and close the contour 
of integration in the upper half-plane. The only poles of the resulting inte­
grand in the interior of the contour of integration are +am, m = O, 1, 2, .... 

Applying the Cauchy theorem to the resulting integral, we can write the expres­
sion for ~ in the form of a sum over the residues of the integrand, in which 
case 

where 

. . . 

'F,;='Fo+ I1 A(a,,,) (chy,.(h-z)+11 

A(ll)- 4<.t.>4«». 
a· (m)(cz + ke) 

.m-0 . 

. 
shy,.(h-z) }e-'"m•, 

?m 
( 7) 

We note that all the terms under the summation sum have the significance 
of the eigenwaves of the waveguide. The first n + 1 of them (m = 0, 1, ..• , n) 
are harmonic functions of x whereas all the others (m = n + 1, n + 2,· ••• ) decay 
exponentially with decreasing x < 0. We note that n + 1 ~ 1, i.e., there is at 
least one propagating wave in x. 

All the terms in the sum in ( 7) are harmonic functions of z, except for 
the first two (m = O, 1) for -11µo/l/fµo-'l&)<l and the first (m = 0) for -µµJtf(fl0.:...11)>1, 
since Ym, m = 2, 3, .•. in the first case, or m = 1, 2, •.. in the second, are 

purely imaginary numbers. 

The inequality -11µo/lf(<µ.--µ)>l is satisfied when µo/l<l for 0>>j3c and when 
l+ghjc•>µofi>I for w < w • The inequality -µoflh/(110-11)<l is satisfied when l<J&oll<l+ s 
+ ghfc• for w 

acteristic 

> w 
s and µofi>l+ghfc• for w > Be. In these expressions w

8 
is the char-

freciuency of the waveguide, given by: 

The series in (7) is absolutely convergent, together with all its deriva­
tives, for all %e(O,h} and x < O. 

When the field in region II is analyzed, the first integral is conveniently 
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taken in terms of polar coordinates (rl, el) with the center at 01 = (0, 0), 

and the second integral in terms of (r 2 , e
2

) with the center at o
2 

= (0, .2h). 

The angles e1 and e2 are me~sured, respectively, from the Ox and {z-2h, x>O) axes 

in the anticlockwise direction. 

Closing the contours of integration in a suitable i:.ray, taking into acco~nt 

the ·re.sidues of the integrands at the points ko;><o,;.a V kl+~=OlfC, ,..;,aYk'+11' =oi'fg , 
and carrying out the asymptotic estimate of the integrals over contours running 
around cuts, we obtain the following expression for the resultant field in II: 

( 8) 

where 'l' = •'JI. 4(k,,)4("0)e-1• .. l-•x.s is the Kelvin wave under the half-plane r, 
• -(i..+~ . 

which is a progressive way propagating in the negative x direction with velocity 
c, and 

is a surface wave propagating over the free surface in the positive direction of 
x with the phase velocity g/w. 

as 
The following asymptotic expressions are valid for the terms o/jd' j 

k, rj -+ '°: 

'¥1 = (f) {a(61). r1sin 61) -·"-':,"'l~;.;;;1~;..;:.<.:1)1-{. :, e1
.,1"'<•11-

1
•14( J + o( ~I)). 

where a:(6)=-ka'cos6ftp(6), tp(6)=Ya•cos~e+sin'~. 

1, 2 

5. Let us now examine the wave field produced by diffraction. In region 
I, the diffraction field can be represented by (7) in terms of the set of wave­
guide eigenfunctions. 

In region II, the field consists of two qualitatively different types of 
terms. Terms belonging to the first type, i.e., o/k and o/

8
, are waves that de-

crease exponentially from their maximum value on r and the free surface with 
distance from them, and progressive waves in x traveling away from the edge of 
r. The waves o/k exist only for u 0 < O, i.e., ~c2/g>l, and the waves o/s exist 

only at a particular frequency: "''>Pg. 

The second type of term in (8) is represented by o/ld and o/ 2d. Because of 

(4), '1' 2d can be looked upon as a reflection of the field represented by '1'
1

d from 

the free surface in accordance with a particular law. The term '1'
1

d describes 

a wave propagating away from the edge of r with amplitude that decreases mostly 
as {kr1)-lf2 with distance from the edge, where surfaces of constant phase tend to 
a family of ellipses elongated along Oz and centered on o1 as kri increases. 

The terms ~ld and o/ 2d are qualitatively similar to those in [2]. 

We now note that the problem of d1ffraction of the plane wave 11'"= Mo(i..J 
2y (ko) 

· e'•-11•~· by the edge of r can be solved in precisely the same way. Here, lkol <ka: 
and y(k,,),,;. -(ifa) V kla>-k;. Actually, the formulation of the problem remains the 
same if the resultant field in the region {O<z<h} is denoted by 'I', whereas in 
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the region {z<O} it is represented by '¥,-'¥+'¥0+'Y0', where 1J.I: µ...,-y(k,,) e,._.+><•·>• is 
2y (ko) . 

the wave reflected from the half-plane r. The resultant wave field in region I 
is then given by (7), but now without the term ~ 0 . Apart from the terms on 

the right hand side of (8), the resultant field in region II is also described 

by the terms '¥0, '¥0•, and 'l'R= -:;(~: R(k,.)t<•..+v<•0><,_,., (wave _reflected f!'om the free 

surface), combined strictly in accordance with the laws of geometric optics. 
From the mathematical point of view, the latter result is due to the fact that 
the quantity k 0 is no longer related to the solution of (3), and this means 

that the integrands in (4) have a residue at this point. · 

The last o·f these problems is a typical ranging problem when a rectilinear 
barrier is immersed in the liquid, parallel to its free surface. 
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