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A transformation is found between the function 1/(1 - z) of a complex
variable, defined a two-dimensional stellar region, .to the reciprocal
distance 1/A that is a function of a real variable defined in three-
dimensional space. Formulas relating the coefficients of the expan-
slon of 1/A in terms of spherical functions with the coefficlents of
the Mittag-Leffler expansion of the corresponding complex function
1/(1 - z) are derived,

The gravitational potential of 2 planet V=ffdm/A expressed as a series in
terms cf spherical functions (Laplace series), which is widely used to-analyze
satellite data, is definitely valld only outside a sphere S passing through the
highest point of the planet, since it is derlved on the basls of an expansion
of the reciprocal distance 1/4 into a power serieg that converges only outside
S. Additiconal analysis 1s required when we wish to examlne the validity of
the satellite model of the potentlal in the intericr of S, for example, on the
physical surfaces of planets {1-3]. However, even when the Laplace series con-
verges on the physical surface, the representation may not be the optimum rep-
resentation (in the sense of the rate of convergence) because the system of
spherical functions 1s not orthogonal on the nonspherical surface. Of course,
it is possible to transform teo an expansion 1ln terms of a set of functions that
are orthogonal in a given region of observation (for example, the Lame functions
outside an ellipscld or tThe spatial analog of the Faber polynomials outside an
arbitrary smoothed surface). However, this is a very complicated procedure and
the transformatlion from the Laplace series to it is a very difficult and as yet
generally unscolved problem. Moracver, the expansion over spherical functions
is very convenlent in practlcal analysis and interpretation of bhoth satellite
and terraestrial gravimetric observations.

It is therefore desirable o obtain an expansion for the potential in terms
of spherical functions that would converge everywhere outside an arbifrary sur-
face, with coefficients that could be chosen so as to ensure the maximum range
of convergence for given regions of observatlons, and to whileh 1t would be easy
to transfcerm from the Laplace series. It is clear that this expansion may be
obtained not from a power series for the reciprocal distance but from another
expansion that converges in an arbitrary region., In a previous paperli] we
proposed to-use for this purpcse the Mittag-Leffler expansion [5, p. 4997 for
an analytic function in a stellar regiocn, which differs from a power series by
the presence of certain factors LM<l 1in front of each coefficient of degree k,
which depend on the order n of the approximaticon and on the parameters of the
approximation region.
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We shall show below that the corresponding eipansion for the reciprocal
distance that converges in an arbltrary region differs from the generally adopted
expansion in ferms of spherical functions (which converges only outside S) by

the same factor Ck(n):
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where r', r are the radlial distances of the pcint of integration and observation,
respectlively, and ¥ 1s the angular separation between them. We must now solve
two problems, namely, we must find the transformation from the funetion 1/A of

8 real varlable defilned in three-dimensional space to a complex function f£(z)
defined in a two-dimensional stellar region, and we must derive formulas relating
the coefficlents of the expansion for 1/A in terms of gspherical functions to

the coefficlents of the Mittag-Leffler expansion for the corresponding complex
function f(z).

The first problem can be solved by transforming in the formula for the
reciprocal distance
-

t
A = r)/l—2(r'[r_)cos¢+(r_']r)’

to the complex variable z=(”/rje®. This glves r/A={l—z|-,

We now conslder the manifold desceribed by the point z when the point of
integration runs through all the points in the body of a planet T while the
peint of chservatlion lles 1in the space external to T. This is a bounded (when
r # 0) and closed (because T 1s closed) single-connected manifold, l.e., a
closed reglion D that does net contaln a single real positive number z = x > 1
(since ¢ = 0 for r > r') and is bounded hy a closed single-valusd curve d whose
maximum and minimum radii correspond to the maximum and minimum radii R of the

surface of the body T:
[2d| max=r” mx/rm-Rmul Rom,
1241 m’*Rm/fmu-l
In the above stellar region D, centered on z = 0, the function 1/{(1 - z)

is analytic and, consequently, can be represented by a Mittag-Leffler expansion
that converges in D [5]:

n .
1
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"
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Cim =ttt ) —1— B, (3}
-2
Sq(k} are the 3%tirling numbers of the first kind, and 0<a<l, p=l—e-¥* 2re param-

eters that characterize the region that approximates D.
We shall now outline the solution of the second problem. The convergence

of the sequence of analytic functions (2) has as 1ts consequence the convergence
of fthe sequence of moduli:
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and { > represents the integer part.

Using the generating function for Stirling numbers [6]

(nrty) - B

together with (3), we find that
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Thus, by substituting (C* in (4) 4in place of Ck(n), we obtain an expan-
sion that approaches r/A from above and, then, by replacing (CM* with Ck(n),
we obtain an expansion that approaches r/A from below. Henceforth we shall

replace Ck('n)“ with (C;"‘i)‘, throughout., We thus' obtain
— = limVT+S, , (7)
A [

where

n
S = .z,. (Cmym le,t,;" (Lr) ,
. N
AV= ¥ (@—8u) cos 20
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If we begin with (7) for {S.*|<l, and expand into a power seriles, we eventually
obtain

g lmg(cw)*( ) Pu(¥), (8)

where
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We shall now show that (9) deflnes the classical Legendre polynomial, When
zi<l , the analytic funetion 1/{1 - z) can be expanded into a power series of
the form

n

: = {im ¥ 2%,
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Proceeding as before, we find that, when rt/r < 1,

: n
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On the other hand, we know that, when r'/r < 1, there is the unique expansion
o r‘ \‘ ‘ .
=Y (%) Puteos ),

where Pg@osw)is the unnormalized Legendre polynomial. 'Conséquently, it does
| indeed turn out that Pe(P)=P(cosyp).

If we now consider (7) for|S:*|>I, we can isolate 1n Sp* a constant part C
such that Sy/=(S.*~C)/(I+C)<]1 and then expand (7) in S,'. This again leads to (8).

Replacing (CiM* with Ck(n) in {8), we obtaln the expansion {1) that ap-
proaches 1/4 from below, as required.

Substituting (1} or (8) into the formula for the potential, and integrating
ovar the masses of the planet, we sbtain the representation

V(.- . J\.):sllmeB {C«M)J - (A cosmx+3msm,m}.).°m(smcp).

ke mam{

which converges uniformly everywhere cutside the physical surface of the nlanet
and differs from the Laplace series by the factors G or (Ci™*, The preserice
of the former ensures convergence from below and of the second convergence from
above, The size of these factors depends on ‘the form of the physical surface
of the planet via the parameter o in (3).. The choice of this parameter that
ensures optimum representatlion of the potential will be discussed elsewhere.
Here we confine our attention tc estimates of the coefficients C™ and of their
difference from (C/M* in a particular order n of the approximaticn.

From (3), (5), and (6), we have

0<(@BP < O < (CMP<lim CP = 1.
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cw 0,36 - . x=0,1.
» .k e () " ()
2 1 0,51 0,1
) 0,12 0,26 0.01 0,01
10 1 0,86 0,29
10 0,00002 0,2 1010 0,4.10°%
30 1 0,97 . 0,40
o 30 {1 0.4 10~ 1012
100 1 (,9999 . : 0,52
100 10742 0,99 10100 0,3.107%¢

In particular
: "
Co=(apr; Crm=a )2
gl
More detailed estimates for large n can be obtained using asymptotic estimates
for Sq(k). We thus find for &=0 (Inn) that
1—-kfrHiges (aln ) =< Cy® <I—kfm (e lnm)*=Y/(a+1), (10)

where

(Cmt —CiM < kPt atét/e - O
. =

and this occurs more rapidly as B decreases, i.e., 0 increases.

When k ~ n, we find that

(aB)* < Cu™ < (k[2)*a*", (11)
in which case-
(C?U“ﬁcﬁf;zﬁ
and this occcurs more rapidly for smaller a.
We must now estimate the dependence of Ck(n} on a. It is clear from (10)

and (11) that Ck(n) lncreases with increazsing a but, sven when a - 1 for k ~ n,
the coefficient Ck(n) does not tend to unity because 8 < 1 = l/e. Transforming
(10) and (11), we find that, for small k,

1 — behetamimtne=\ oo Clob oo | puitygi o 1),
and when k ~ n we have
ate—m I o O < (12T Y

Analysis of these formulas shows that the difference between the upper limit of
Ck<n) and unity decreases with ilncreasing n and decreasing k independently of
the dependence on a. On the other hand, the lower 1limit is determined by o and
increases with increasing o more raplidly as n increasses and k decreases.
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As an illustration, let us consider the Values of C (n) for certain a, n,

and k (see table) It is clear that the presence of these factors results in
strong smoothing of the Laplace series, especially for the higher harmonics.

We note in conclusion that, by virtue of the Weierstrass theorem on the

differentiation of a uniformly converging sequence of analytic functions, the
following sequences will converge uniformly outside the physiczal surface:

(ﬂ)
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