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A transformation is found between the function 1/(1 - z) of a complex 
variable, defined a two-dimensional stellar region, .to the reciprocal 
distance l/A that is a function of a real variable defined in three
dimensional space. Formulas relating the coefficients of the expan
sion of l/A in terms of spherical functions with the coefficients of 
the Mittag-Leffler expansion of the corresponding complex function 
1/ Cl - z) are derived. 

The gravitational potential of a planet V-ffdm/6 expressed as a series in 
terms of spherical functions (Laplace series), which is widely used to-analyze 
satellite data, is definitely valid only outside a sphere S passing through the 
highest point of the planet, since it is derived on the basis of an expansion 
of the reciprocal distance l/A into a power series that converges only outside 
S. Additional analysis is required when we wish to examine the validity of 
the satellite model of the potential in the interior of S, for example, on the 
physical surfaces of planets [l-3]. However, even when the Laplace series con
verges on the physical surface, the representation may not be the optimum rep
resentation (in the sense of the rate of convergence) because the system of 
spherical functions is not orthogonal on the nonspherical surface. Of course, 
it is possible to transform to an expansion in terms of a set of functions that 
are orthogonal in a given region of observation (for example, the Lame functions 
outside an ellipsoid or the spatial analog of the Faber polynomials outside an 
arbitrary smoothed surface). However, this is a very complicated procedure and 
the transformation from the Laplace series to it is a very difficult and as yet 
generally unsolved problem. Moreover, the expansion over spherical functions 
is very convenient in practical analysis and interpretation of both satellite 
and terrestrial gravimetric observations. 

It is therefore desirable to obtain an expansion for the potential in terms 
of spherical functions that would converge everywhere outside an arbitrary sur
face, with coefficients that could be chosen so as to ensure the maximum range 
of convergence for given regions of observations, and to which it would be easy 
to transform from the Laplace series. It is clear that this expansion may be 
obtained not from a power series for the reciprocal distance but from another 
expansion that converges in an arbitrary region. In a previous paper[4] we 
proposed to-use for this purpose the Mittag-Leffler expansion [5, p. 499] for 
an analytic function in a stellar region, which differs from a power series by 
the presence of certain factors C•'"l<l in front of each coefficient of degree k, 
which depend on the order n of the approximation and on the parameters of the 
approximation region. 
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We shall show below that the corresponding expansion for the reciprocal 
distance that converges in an arbitrary region differs from the generally adopted 
expansion in terms of spherical functions (which converges only outside S) by 
the same factor ck(n), 

• 
...!..=lim-1-L q•> (.i..)• P.(cosij>), 
4n-mf r. 

( 1) 

·-· 
where r', rare the radial distances of the point of integration and observation, 
respectively, and~ is the angular separation between them. We must now solve 
two problems, namely, we must find the transformation from the function l/~ of 
a real variable defined in three-dimensional space to a complex function f(z) 
defined in a two-dimensional stellar region, and we must derive formulas relating 
the coefficients of the expansion for l/~ in terms of spherical functions to 
the coefficients of the Mittag-Leffler expansion for the corresponding complex 
function f(z). · 

The first problem can be solved by transforming in the formula for the 
recfprocal distance 

t . 
-:1- -,-y'-:="'-1=-=2(=r'=/=r)=.,,,,=.p=+=(r'=/=r)"'•~ 

to the complex variable z-(r'/r)eit. This gives r/.:1=11-zl-1 • 

We now consider the manifold described by the point z when the point of 
integration runs through all the points in the body of a planet T while the 
point of observation lies in the space external to T. This is a bounded (when 
r # 0) and closed (because T is closed) single-connected manifold, i.e., a 
closed region D that does not contain a single real positive number z = x ~ 1 
(.since~= 0 for r > r') and is bounded by a closed single-valued curved whose 
maximum and minimum radii correspond to the maximum and minimum radii R of the 
surface of the body T: 

IZ•Jmll-r',,;.Jr ..... -Rm..1Rm1J1, 

Jz.J.,,,.-R...,J;,,;,,,-.1. 

In the above stellar region D, centered on z = O, the function 1/(1 - z) 
is analytic and, consequently, can be represented by a Mittag-Leffler expansion 
that converges in D [5]: 

• 
--1--tim~Cj,•>zk, (2) 

1-z ,.._,'-a -
where 

• <•11 
c<-1 - .. •kl~~~· 

Jr ~ qi f 

S (k) are the Stirling numbers of the first kind, and O<a;.<l, ~-1-.-11• 
q 

eters that characterize the region that approximates D. 

(3) 

are param-

We shall now outline the solution of the second problem. The convergence 
of the sequence of analytic functions (2) has as its consequence the convergence 
of the sequence of moduli: 
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( 4 ) 

,. 
where s.=EAl:'l<iJ>>(:r. 

m-1 

A,.l•l (•h):. ~ (2 -6 ) c<•l · c'"l .. cos 21•• · 
1' ~· Ol ~l ..!!!..+l Tt 

.m/m\ 2 2 '---1-· 2 , 2 I 

. ( .. N=min 2 . 2n- m:) 
2 • 

and ( ) represents the integer part. 

Using the generating function for Stirling numbers [6] 

<a (l!:) 

(.ln_!_)•=kl~~p• (5) 
. 1:-P ~ qt. 

'··•' . ,_. . 

together with (3), we find that 

( 6) 

where ·o<Eq<»..; jSq<» I and q•> - (C\">J' • ..... 
Thus, by substituting (C,<•1)' in (4) in place of Ck (n), we obtain an expan

sion that approaches r//::. from above and, then, by replacing (C1<•>) .. with Ck (n), 

we obtain an expansion that approaches r//::. from below. Henceforth we shall 

replace Ck (.n) with (C11•i)>, throughout. We thus obtain 

where 

2n 

S: = :E (C!"»" Al;'> ( '; r. -· 
A<n> == 
'"· 

N 

1.:- ' (2-6.,) cos 2liJ>. 
,_ ..!!.. - I j:! \ .-

2 ' 2 .. ,. 

(7) 

If we begin with (7) for 1s.•1 <I, and expand into a power series, we eventually 
obtain 

• 
..!.. =Jim ti (C[•>J•(.!:....)• P~(iJl), 

4 _ .. LJ '· ._. ( 8) 

where 
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d, =(-!)'+' 1·1·3··.(2i:-3) • 
2·4···2i 

(i; "'· ... 'k,) = ii • 
· k,.! ••• k1I 

( 9 ) 

We shall now show that ( 9) defines the classical ·Legendre polynomial. When 
lzl<I , the analytic function 1/(1 - z) can be expanded into a power series of 
the f·orm 

• 
-

1
-. = lim ~ z'. 

1-Z· (n-oi ~ 
. '.t-0 

Proceeding as before, we find that, when r'/r < 1, 

• 
..!.. .;. _I - = lim ~ (L)• P• ('!>)· 

4. fl-zl ~°' ~ r · 
. . ' . l-0 ~ 

On the other hand, we know that, when r'/r < 1, there is the unique expansion 

where P.(cos1j>) is the unnormalized Legendre polynomial. Consequently, it does 
indeed turn out that P•('l>)-P.(cos1jt). 

If we now consider (7) for IS.*1>1, we can isolate in Sn* a constant part C 
such that S.'-(S.0 -C)/(i+C)<I and then expand (7) in Sn'· This again leads to (8). 

• Replacing (C,<•>)• with Ck ( n) in ( 8), we obtain the expansion (1) that ap

proaches 1/6 from below, as required. 

Substituting (1) or (8) into the formula for the potential, and integrating 
over the masses of the planet, we obtain the representation 

which converges uniformly everywhere outside the physical surface of the plane~ 
and differs from the Laplace series by the factors C,<•I or (C,l•I)". The presence 
of the former ensures convergence from below and of the second convergence from 
above. The size of these factors depends on 'the form of the physical surface 
of the planet via the parameter a in (3) •. The choice of this parameter that 
ensures optimum representation of the potential will be discussed elsewhere. 
Here we confine our attention to estimates of the coefficients C,<•> and of their 
difference from (C,<•1)• in a particular order n of the approximation. 

From (3), (5), and (6), we have 

O<(ci~}'~ q•1 <(Cl"»'< Jim q•1~1. ..... 
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is- 0,36 m-0.1. 

• • c~•l ( c\•l )" ci"1 ( ci"1 )" 

2 I ,0,51 0, I 
2 0.12 0,26 0,01 0,01 

10 I 0,86 0.29 
10 0,00002 0,2 10-10 0.4° lO-• 

30 I 0,97 0,40 
30 10-H 0,4 lQ-SO 10-u: 

100 I 0,9999 0,52 
100 10-'7 0,99 10-1• o.a.10-=• 

In particular 

. II .. 

q-"'~L. 
J,,,;, q 
f•l. 

More detailed estimates for large n can be obtained using asymptotic estimates 

for Sq (k). We thus find for k-0 (Inn) that 

(10) 

where 

co,•l)•-q•> <kl!'*' "'•e11'" - o ,._. 

and this occurs more rapidly as S decreases, i.e., a increases. 

When k - n, we find that 

(11) 

in which case 

(C!•l)•-o.oi - 0 1- 111 _ ,...... 

and this occurs more rapidly for smaller a. 

We must now estimate the dependence of C, (n) on ct. It is clear from (10) 

and (11) that Ck(n) increases with increasing Ka but, even when ct+ 1 fork - n, 

the coefficient Ck(n) does not tend to unity because S < 1 - l/e. Transforming 

( 10) and Cll), we find that, for small k, 

t -Ra:'B1~1..+or1"" < Ci"1 < 1-1ur•1•rcn' + t ), 
and when k - n we have 

Analysis of these formulas shows that the difference between the upper limit of 

Ck(n) and unity decreases with increasing n and decreasing k independently of 

the dependence on a. On the other hand, the lower limit is determined by a and 
increases with increasing a more rapidly as n increases and k decreases. 
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As an illustration, let us 
and k (see table). It is clear 
strong smoothing of the Laplace 

conside; the values of C, (n) for certain a, n, 
' K 

.that the presence of these factors results in 
series, especially for the higher harmonics. 

We note in conclusion that, by virtue of the Weierstrass theorem on the 
differentiation of a uniformly converging sequence of analytic functions, the 
following sequences will converge uniform~y outside the physi8al surface: 

..!!'.: (r, q>, A)= lim f ~ ~ jq•> } .1..( P,.,.(sin op) (A,.., COS.mA+ ., . . -m .:: f-. \ ( c:•>)• .• , ,.,. , ' 

+ B,.,sinm"l] ·· 

REFERENCES 

1. V. A. Antonov and K. V. 'Kholshevnikov, Astron. Zh., vol. 57, pp. 1323-
1330, 1980. 

2. N. A. Chuikova, Izv. Vuzov. Geodez. i Aerofot., no. 4, pp. 54-63, 
1980. 

3. N. A. Chuikova, Vestn. Mask. Univ. Ser. 3 Fiz. Astron. [Moscow Univer
sity Physics Bulletin], no. 1, pp. 22-28, 198"4. 

4. N. A. Chuikova, Vestn. Mask. Univ. Ser. 3 Fiz. Astron. [Moscow Univer
sity Physics Bulletin], no. 5, pp. 77-81, 1985. 

5. A. I. Markushevich, Theory of Analytic Functions [in Russian], vol. 2, 
Moscow, 1968. 

6. Handbook on Special .Functions [in Russian], Moscow, 1979. 

10 June 1986 Shternberg State Astronomical Institute 

67 


