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An analytic description is obtained for the generation of nonlinear 
sound by moving 6-localized sources. 

The development of theoretical methods for the analysis of the generation 
of nonlinear sound by moving point sources was stimulated by the expanding 
range of possible physical applications. Nonlinear acoustic effects are funda
mentally important in stimulated Mandelstam-Brillouin scattering [l], the 
excitation of sound by a scanning light beam [2,3], and for oscillations estab
lished in acoustic resonators [4]. The effective interaction with strain waves 
prevents the penetration of the acoustic barrier by the electron-hole drops [5]. 
Experiments [6-8] indicate that an elec·tron-hole plasma shock and a melting front 
can propagate in the crystal with near-sonic velocity. Quasisynchronous exci
tation of nonlinear sound may also play an important part under these conditions. 
In such cases, the moving sources of acoustic waves are 6-localized in space, 
i.e., on the electron-hole plasma front or the melt-crystal separation boundary. 

The generation of acoustic waves of finite amplitude by extended sources 
moving with near-sonic velocity can be described by [2] 

(1) 

where s = x - vc, v is the velocity of the sources, c 0 is the velocity of sound, 

lo = v - c 0 is the velocity difference (l<ll<•ol, E is the nonlinear acouscic param

eter, D = Us is the deformation of the crystal, U is the displacement in the 

acoustic wave, and the function fs(sl describes the distribution of sources of 

sound in space. The inhomogeneous quasilinear equation (1) can be studied on 
the phase plane [3,4]. Analytic solutions have been obtained in an implicit 
form [9,10] for special cases of f(s). In either case, the results obtained 
are difficult to use, e.g., to calculate the reaction of acoustic waves on the 
source [11]. It is thus necessary to find explicit acoustic-wave profiles sat
isfying (1), if only for certain model source distributions. We note that this 
type of solution was found in [l] for a periodic saw-tooth right hand side. In 
this paper, we obtain an explicit description in the form of the profiles of 
nonlinear strain waves excited by sources that are 6-localiZed in space. 

Substituting f = f 0 0(sl on the right hand side of (1), where 0(s) is the 
unit function, we obtain 
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where o(~) is the Dirac-delta-function. When the generation of sound by elec
tron-hole plasma is analyzed, we can take the deformation mechanism to be It.I= 
= ldln,,/2p,c,, where d is the constant of the deformation notential of the electri:Jn
hole pair, nfr is the plasma concentration on the front, and p0 is the equili-

brium density of the crystal. When the excitation of sound on the melting 
front is examined, w_e take llol=l.l.plco/2p,, where /',p is the change in the density of 
the medium on m~lting. The sign on the right hand side of (2) depends on 
whether the medium is compressed or expands when the electron-hole pairs or 
melting is photogenerated. 

The solutions of (2) must satisfy the following symmetry conditions: 

D(a, /o) --D(-a, -fo). 

D(;, .l., /0)--D(-;, -.\,-lo). 

It is therefore sufficient to examine (2), for example, for E > a, fa > a. In 

terms of the dimensionless variables D-'D/Do (Do-Wol/eco)'J'). !!.~Mil. (l!.o-ec,D,), ;-m. 1-11!.oi<o, 
where ~~ is the unit of length, we can transform (2) so that it takes the form 

(3) 

We note that, according to (3), the following conservation law is valid for 
nonstationary acoustic waves [3]: 

~ 

J Dd<=I. 

Acoustic waves described by the· linearized Eq. (3) 

I D<•= DJ=--1em-ee<+l!.tll, 
. ' /!. 

( 4) 

grow without limit as the source velocity approaches the velocity of sound: 

Consequently, for small departures from synchronism (Jl!.l~-1), the self-action of 
the excited acoustic waves must be correctly taken into account. 

We have examined the nonlinear equation (3) on t·he phase plate. We suc
ceeded in obtaining an explicit description of the profiles of the excited 
strain waves (see the figure). 

In the subsonic sound geneation regime (1!.~-1~ figure, a), all the acoustic 
disturbances-run ahead of the sources, which are localized at the origin. Since 
in the case that we are considering fa > a, finite-amplitude rarefaction •,,-aves 

are excited (D >a), and propagate with subsonic velocities for s > a, we can see 
why the leading edge of the acoustic pulse spreads out in proportion to -&-f&'-2)1 
(see figure, a). 

In the subsonic sound generation regime (/',~a, figure, b), all the ex
cited acoustic waves lag behind the sources. 

In the mixed regime (-i~<n, figure, c), some of the sound waves run ahead 
of the sources and some are amplified so much that their propagation velocity 
is less than the source velocity. We note that, in the last two regimes, the 
position of the trailing edge, which is formed by the nonlinear steepening of 
the acoustic pulse [3], was determined from the integral relation ( 4). 
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Typical shape of acoustic pulses excited 
by a moving a-localized source [a) sub
sonic generation of sound: 6 .. -r2; b) 
ultrasonic regime: A~ O; c) mixed re
gime: -j]~.,;;o]. 

.. 

The above analytic solutions are simple enough to suggest that they might 
be effectively applied to the investigation of the interaction between nonlinear 
sound and rapidly moving compressible plasma. There is alsoundoubted interest 
in the generalization of these solutions to quasi-one-dimensional problems in 
nonlinear acoustics [12]. 

REFERENCES 

1. Rudenko, Zh. Eksp. Teor. Fiz., 
vol. 71, 

2. 

A. A. Karabutov, E. A. 
no. 1(7), pp. 111-121, 
A. A. Karabutov and o. 

Lapshin, and 0. V. 
1976. 
V. Rudenko, Akust. Zh., vol. 25, p~. 536-542, 

1979. 
3. V. E. Gusev and A. A. Karabutov, Ibid., vol. 27, pp. 213-219, 1981. 
4. V. E. Gusev, Ibid., vol. 30, pp. 204-212, 1984. 
5. S. G. Tikhodeev, Usp. Fiz. Nauk, vol. 145, pp. 3-50, 1985. 
6. A. Forchel et al., J. Lumin., vol. 30, pp. 67-81, 1985. 
7. J. P. Wolfe, Ibid., vol. 30, pp. 82-113, 1985. 
8. C. Hirlimann, J. Phys. (Paris), vol. 44, Conf. C5, pp. 99-105, 1983. 
9. V. E. Gusev and O. V. Rudenko, Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. 

[Moscow Univers.ity Physics Bulletin], no. 4, pp. 117-119, 1978. 
10. V. E. Gusev, Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. [Moscow University 

Physics Bulletin], no. 6, pp. 7-12, 1981. 
11. M. I. D'yakonov and A. V. Subashiev, Zh. Eksp. Teor. Fiz., vol. 75, 

no. 5(11), pp. 1943-1951, 1978. 
12. S. A. Akhmanov, V. E. Gusev, A. A. Karabutov, and O. V. Rudenko, in: Proc. 

Fifth All-Union Conf. on Nonresonant Interactions of Optical Radiation with 
Matter [in Russian], pp. 371-372, Leningrad, 1981. 

25 iiovember 1986 Chair of General Physics 
and Wave Processes 

86 


