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An analytic deseription is cbtalned for the generation of nonlinear
sound by moving d-localized sgources.

The develcpment of theoretical methods for the analysls of the generation
of nonlinear sound by moving polnt sources was stimulated by the expanding
range of possible physical applications. Nonlinear acoustic effects are funda-
mentally important in stimulated Mandelstam=Brillouin scettering [1], the
excitation of sound by a scanning light beam [2,3], and for osciilations estab-
lished in acoustic resonators [4]. The effective interaction with strain waves
prevents the penetration of the acoustic barrier by the electron-hole drops [5].
Experiments [6-8] indicate that an electren-hole plasma shock and a melting front
can propagate in the cerystal with near-sonic velocity. Quasisynchronous exci-
tation of nonlinear sound may alsoc play an important part under these conditions.
In such cases, the moving sources of acoustic waves are §-localized in space,
l.e., on the electron-hole plasma front or the melt=crystal separation boundary.

The generation of acoustic wéves of finite amplitude by extended sources
moving with near-sonic velocity can be described by [2]

Dy ADy— ecoDDywfy, D(E, tm0)=0 (1)

H

where £ X - V&, v is the velocity of the scurces, Cy is the velocity of sound,

A=v = q is the velocity difference UAhcmL € is the nonlinear acoustic param-—
eter, D = UE is the deformation of the crystal, U is the displacement in the
acoustic wave, and the functionrfg(i) describes the distribution of sources of

- sound 1n space. The inhomogeneous quasilinear equation (1) can be studied on
the phase plane [3,4]. Analytic solutlons have been obtalned in an Implicit
form [9,10] for special cases of f(£). In either case, the results obtained
are difficult fto use, 2.8., to calculate the rsaction of acoustic waves on the
source [11]. It is thus necessary to find explicit acoustic-wave profiles sat-
isfying (1}, if only for certain model source distributicns. We note that this
type of solution was found in [1] for a pericdic saw-tcoth right hand side. In
this paper, we obtain an explicit description in the form of the profiles of
nonlinear strain waves excited by sources that are d-localized In space.

Subtstituting f = FfyQ(£) on the right hand side of (1), where ©(£) is the
unit function, we obtain

De— 80y — ecaDDy=(sign fo) |fol 8(2) (2)
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~where §(£) is the Dirac~delta-function. Wheén the generation of scund by elec-

tron-hole plasma is analyzed, we can take the deformation mechanism to be hl=

= (dlng 200, where d 1is the constant of the deformaticon potential of the elsctron-
hole pair, Do, is the plasma concentration on the front, and Py is the egquili-

brium density of the crystal. When the excitation of sound on the melting
front is examined, we take |fol=|Ap|es2p0, where Ap is the change in the density of
the medium cn melting. The sign on the right hand side of (2) depends on
whether the medium 13 compressed or expands when the electron-hole pairs or
melting is photogenerated.

The solutions of (2) must satisfy the following symmetry conditions:
D{e, foy =—D(—e, ~=fo}.
D(E A, fo)-—D(—§ -3, =fo}.
It is therefore sufficient to examine (2), for example, for £ > 0, fO > 0. In
terms of the dimensionless variables D=DD, (De=(lfol/ecs)'ft), AmAfAa  (AomscDe}, E=EfBo fweidofEe,
where EO is the unit of length, we can transform (2) so that 1t takes the form
Dy — ADy— DDy=8(3). _ (3)

We note that, according to (3), the following conservation law is valid for
- nonstaticnary acoustic waves [3]:

I DdE = 1. (4)
Aqoustic waves descrilbed by the linearized Bg. (3)
D(s = 0)= —— (B(E)~- 8% + A1),

grow without limif as the source veloclty approaches the velocity of sound:
D(g=0, A=0) =8 (E}4

Consequently, for small departures from synchronism (]A|€1), the self-action of
the excited acoustic waves must be correctly taken into account.

We have examined the nonlinear equation (3) on the phase plate. We suc-
ceeded in obftaining an expliclt description of the profiles of the excited
strain waves (see the figure).

In the subsonlc sound geneation regime (ag—¥2, figure, a), all the acoustic
disturbances- run ahead of the scurces, which are localized at the origin. Since
in the case that we are considering fo > 0, finite-amplitude rarefaction waves

are excited (D > 0), and propagate with subsoniec #eloc1t4es for ¢ > 0, we ¢an see
why the leading edge of the acoustlic pulse spreads out in proport+onto-—a — ¥ AT =3t
(see figure, al.

In the subsonic sound generation regime {(A 2 O figure, b), all the ex-
cited acoustic waves lag behind the sources.

In the mixed regime (-1Z<A<0, figure, c¢), some of the sound waves run ahead
of the sources and some are amplified so much that their propagation velocity
is iess than the source veloclity. We note that, in the last two regimes, the
position of the trailing edge, which is formed bty fhe nonlinear steepening of
the acoustie pulse [3], was determined from the integral relation (4).
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Typical shape of acoustic pulses excited
by a moving &-lcecalized source [a) sub-
sonic generation of sound: Ag<—y2; b
ultrascnic regime: A > 0; c¢) mixed re-
gime: —y2<A<0].

The above analytic solutions are simple enough to suggest that they might
be effectively applied to the investigation of the interaction between nonlinear
gsound and rapldly moving compressible plasma. There is alscundoubted interest
in the generalization of these soclutions €o guasli-cone-dimensicnal problems in
nonlinear acoustics [12].
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