АКУСТИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

УДК 534.6

МЕТОДИКА ФАЗОВОЙ ГРАДУИРОВКИ ИНТЕНСИМЕТРА В акустическом интерферометре

А. Н. Жуков, А. Н. Иванников, О. С. Тонаканов

(кафедра акустики)

Рассмотрена методика фазовой градуировки интенсиметра. Показана возможность определения величины фазовой погрешности по измерению распределения величин активной и реактивной интенсивностей звукового поля.

В последнее время широкое распространение получили новые акустические измерительные приборы — интенсиметры, позволяющие наряду с измерением величин звукового давления p и колебательной скорости частиц среды в звуковой волне v определять энергетические параметры звукового поля: векторы активной I_a и реактивной интенсивности I_i и функцию Лагранжа L=T-U, представляющую собой разность кинетической T и потенциальной U энергий в точке звукового поля [1].

Наиболее сложной задачей при работе с интенсиметром является его градуировка, в частности фазовая градуировка каналов интенсиметра. Для правильной фазовой градуировки интенсиметра необходимо создать звуковое поле с известными параметрами. Такое поле существует в акустических интерферометрах. Потенциал поля стоячей волны в трубе интерферометра с жесткими боковыми стенками и импедансной границей на торце задается стандартным выражением

$$\Phi(x) = A \left(e^{-jkx} + R e^{jkx + j\varphi_R} \right) e^{j\omega t},$$

где R — модуль коэффициента отражения, φ_R — его фаза, A — параметр, характеризующий мощность излучателя.

Распределение параметров звукового поля в интерферометре описывается выражениями [2]:

$$p(x) = \rho \frac{\partial \Phi}{\partial t} = j\omega\rho A \left(e^{-jkx} + Re^{jkx+j\varphi_R} \right) e^{j\omega t},$$

$$v(x) = -\frac{\partial \Phi}{\partial x} = jkA \left(e^{-jkx} - Re^{jkx+j\varphi_R} \right) e^{j\omega t},$$

$$tg \varphi_{pv}(x) = \frac{2R\sin(2kx+\varphi_R)}{1-R^2},$$

$$(1)$$

$$I_a = \frac{1}{2} \operatorname{Re} \left(pv^* \right) = \frac{1}{2} k\omega\rho A^2 \left(1-R^2 \right),$$

$$(2)$$

$$I_i = -\frac{1}{2} \operatorname{Im} \left(pv^* \right) = k\omega\rho A^2 R \sin(2kx+\varphi_R),$$

$$(3)$$

где p(x) — звуковое давление, v(x) — колебательная скорость частиц среды в звуковой волне, $\varphi_{pv} = \varphi_p - \varphi_v$ — разность фаз между ними, I_a н I_i — активная и реактивная интенсивности звукового поля, v^* — величина, комплексно сопряженная к колебательной скорости. Из выражения (1) для разности фаз видно, что величина функции φ_{pv} при наличии фазового набега между каналами $\Delta \varphi$ сдвигается на $\Delta \varphi$ относительно нулевого значения. Это свойство функции φ_{pv} может быть положено в основу методики фазовой градуировки каналов интенсиметра: достаточно промерить величину φ_{pv} на длине звуковой волны, затем найти среднее арифметическое всех измеренных значений φ_{pv} , которое равно величине фазового набега между каналами интенсиметра. В некоторых случаях величина фазового набега $\Delta \varphi$ может быть определена с удовлетворительной точностью путем измерения максимального и минимального значений величины φ_{pv} в экстремальных точках: ($\varphi_{pv} \max + \varphi_{pv} \min$)/2 = $\Delta \varphi$, так как в идеальном

случае максимальное и минимальное значения ϕ_{pv} равны по величине и имеют разные знаки.

Рассмотрим, к чему приводит фазовый набег $\Delta \phi$ между каналами p и v измерителя интенсивности в акустическом интерферометре при измерении комплексной интенсивности $I = I_a + jI_j$. Если U_I — электрический сигнал, пропорциональный величинекомплексной интенсивности, B — амплитудный коэффициент, характеризующий чувствительность преобразователей, то из выражений (2) и (3) имеем

$$U_{I} = U_{I_{a}} + jU_{I_{j}} = B \left[(1 - R^{2}) \cos \Delta \varphi + 2jR \sin (2kx + \varphi_{R}) \cos \Delta \varphi + j(1 - R^{2}) \sin \Delta \varphi - 2R \sin (2kx + \varphi_{R}) \sin \Delta \varphi \right].$$

Из выражения (4) видно, что при наличии фазового набега $\Delta \phi$ между каналами сигнал, соответствующий величине активной интенсивности I_a , не будет иметь постоянного значения вдоль трубы интерферометра, а приобретет пульсации от $I_{a\mbox{ max}}$ до $I_{a\mbox{ min}}$. Сигнал, соответствующий величине реактивной интенсивности, будет иметь разные абсолютные значения экстремумов реактивной интенсивности $I_{j\mbox{ max}}$ и $I_{j\mbox{ min}}$. Здесь уместно отметить, что наиболее тонким критерием правильной реактивной интенсивности J_a сильно реактивной интенсивности I_a в сильно реактивной интенсивности звуковом поле в интерферометре при R, близком к единице. В этом случае даже небольшие фазовые искажения в несколько десятых долей градуса приводят к пульсациям сигнала, соответствующего величине I_a .

Количественно данные аномалии в распределении измеряемых сигналов U_{I_a} , и U_{I_j} зависят как от величины фазового набега $\Delta \varphi$, так и от величины коэффициента отражения звука. Данный факт может быть использован для определения сдвига фаз в измерительных каналах при известном коэффициенте отражения R. Из выражения (4) находим отношение экстремумов сигналов U_{I_a} и U_{I_i} :

$$\frac{U_{I_{a}\max}}{U_{I_{a}\min}} = \left| \frac{(1-R^{2})+2R \operatorname{tg} \Delta \varphi}{(1-R^{2})-2R \operatorname{tg} \Delta \varphi} \right|,$$

$$\frac{U_{I_{f}\max}}{U_{I_{f}\min}} = \left| \frac{(1-R^{2})\operatorname{tg} \Delta \varphi+2R}{(1-R^{2})\operatorname{tg} \Delta \varphi-2R} \right|.$$
(6)

В акустическом интерферометре кафедры акустики (длиной 5 м) в диапазоне частот 40—280 Гц в стоячей волне было промерено пространственное распределениепараметров звукового поля. В качестве иллюстрации на рисунке представлена характерная картина изменения $\varphi_{pv}(x)$, $I_a(x)$ н $I_i(x)$ при наличии в каналах интенсиметра фазового набега, полученная на частоте 80 Гц (кривые 1, 3 и 5 соответственно). Фазовый набег $\Delta \phi$ определялся путем усреднения фазовых значений φ_{pv} на половине длины звуковой волны, а также на основании выражений (5) и (6) по измеренными экстремальным величинам активной и реактивной интенсивностей с учетом модуля коэффициента отражения на каждой частоте. Следует отметить, что модуль коэффициента отражения определялся традиционным путем из соотношения экстремальных значений величины звукового давления, возможность измерения которой предусматривается в одном из каналов интенсиметра.

Результаты фазовой градуировки приведены в таблице.

<i>f</i> , Гц	l	40	46	56	65	73	80	88	165	280
Δφ°	ļ	16	17,5	14	10,5	10	7,5	7	1	0.

Разброс значений $\Delta \phi$, полученных на основании измерения сдвига фаз и по соотношению экстремумов активной и реактивной интенсивности, на каждой частоте непревышал 2°. Как видно из таблицы, величина $\Delta \phi$ с понижением частоты становится значительной. Это связано с системой подвески датчика для акустических измерений, использованного при градуировке [3]. Возможность устранения данного недостатка конструкции проверялась путем введения в один из каналов обработки сигнала фазовой корректировки, соответствующей набегу фазы $\Delta \phi$. Например, на частоте 80 Гц, где был определен фазовый набег 7,5° (на рисунке данная величина отмечена пунктирной линией 2), после введения соответствующей фазовой коррекции пространственные зависимости I_a и I_j (кривые 4 и 6) стали близки к зависимостям, описываемым выражениями (2) и (3). Разброс значений экстремумов реактивной интенсивности и отклонение значений активной интенсивности от постоянной величины в функции от координаты носили случайный характер и не превышали 10%, что было в пределах

95-

(4)⊧

точности измерительных приборов, входивших в комплект интенсиметра. В том случае, если фазовая корректировка не позволяет привести величины I_a и I_i к виду кривых 4 и 6, можно сделать вывод о наличии конструктивных погрешностей интенсиметра.

Распределение величин φ_{pv} , I_a и I_i в интерферометре при наличии фазового набега и после введения фазовой коррекции: $\varphi_{pv}(x)$ на частоте 80 Гц (1); среднее значение $\varphi_{pv}(2)$; $I_a(x)$ при наличии фазового набега (3) и после корректировки фазы (4); $I_i(x)$ при наличии фазового набега (5) и после корректировки фазы (6)

Предложенная методика фазовой градуировки в отличие от известных методов [4, 5], применимых лишь для интенсиметров с двухмикрофонными зондами и дополнительной корректировкой акустических центров измерительных микрофонов при реальном использовании, не связана с конструкцией приемного устройства (зонда), позволяет проводить градуировку с учетом взаимного многократного отражения звуковых воли на элементах конструкции приемного устройства в сборе и, соответственно, является более универсальной.

СПИСОК ЛИТЕРАТУРЫ

[1] Tichy J.//2nd International congress on acoustic intensity. Senlis (France), 1985. Р. 113—119. [2] Иванников А. Н., Рожин Ф. В., Тонаканов О. С.// У/Вестн. Моск. ун-та. Сер. 3, Физ. Астрон. 1983. 24, № 1. С. 47—53. [3] Жуков А. Н. и др.//Х Всесоюз. акуст. конф. М., 1983. С. 59—63. [4] Gade S.//Вгйен and Kjaer Techn. Rew. 1985. N 4. P. 3—11. [5] Frederiksen E.//Ibid. 1986. N 4. P. 11.

Поступила в редакцию 11.03.87