Значения концентраций $C^{M}_{a\kappa}$ практически совпадают с полученными ранее по экспериментальным данным величинами $C^{0}_{a\kappa}$, что свидетельствует в пользу методики их определения.

Таким образом, в исследованных системах в изученном диапазоне концентраций перенос энергии между компонентами активного раствора осуществляется излучательным путем. При концентрациях акцептора, допускающих собственную генерацию донора $C_{\rm ak} < C^{0}_{\rm ak}$, в растворе доминирует генерационный перенос энергии. При концентрациях акцептора, превышающих критическое значение, $C_{\rm ak} > C^{0}_{\rm ak}$, генерация донора прекращается и перенос энергии осуществляется люминесцентным путем. При дальнейшем увеличении концентрации акцептора начинает проявляться и безызлучательный перенос энергии.

СПИСОК ЛИТЕРАТУРЫ

[1] Pavlopuolos T. G.//Opt. Comm. 1978. 24. Р. 170—174. [2] Салецкий А. М., Левшин Л. В., Южаков В. И.//Журн. прикл. спектр. 1980. 33. С. 100—106. [3] Козма Л. Автореф. докт. дис. Минск (ИФАН БССР), 1977. [4] Левин М. Б., Рева М. Г., Родченкова В. В., Ужинов Б. М.//Квант. электроника. 1986. 13, № 6. С. 1272—1275. [5] Левин М. Б., Рева М. Г., Родченкова В. В., Ужинов Б. М.//Там же. 1987. 14, № 1. С. 27—32. [6] Рева М. Г. и др.//Там же. 1985. 12, № 12. С. 2494—2496.

Поступила в редакцию 03.12.86

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1988. Т. 29, № 2

АКУСТИКА

УДК 534.222.2

АКУСТИЧЕСКАЯ НЕЛИНЕЙНОСТЬ МОЛИБДАТА ГАДОЛИНИЯ

Л. К. Зарембо, Г. П. Морозова, О. Ю. Сердобольская

(кафедра акустики)

Измерено критическое поведение амплитуды второй акустической гармоники в молибдате гадолиния. Экспериментальные результаты согласуются с теоретическими, полученными методом ренормгруппы.

Вблизи структурных фазовых переходов наряду с аномалиями тепловых и диэлектрических свойств существенные аномалии испытывают модули упругости 2-го и более высоких порядков. Для редкоземельных молибдатов, имеющих несобственные сегнетоэлектрические фазовые переходы, аномалии диэлектрической проницаемости малы, поэтому акустические измерения скорости и коэффициента затухания звука в критической области приобретают особую ценность. Скачки скорости и нарастание затухания вблизи фазового перехода удовлетворительно объясняются в рамках теории Ландау.

Для молибдата гадолиния (ГМО) и тербия (ТМО) параметр порядка является двухкомпонентным: $\eta = \{\eta_1, \eta_2\}$. Фазовый переход происходит с изменением симметрии $42m \rightarrow mm2$, с удвоением и поворотом на 45° элементарной ячейки. Термодинамический потенциал, описывающий несобственный переход, можно представить в виде

$$F = F_0 + \frac{1}{2} \alpha \left(\eta_1^2 + \eta_2^2 \right) + \frac{1}{4} \beta_1^0 \left(\eta_1^2 + \eta_2^2 \right)^2 + \frac{1}{4} \beta_2^0 \left(\eta_1^4 + \eta_2^4 \right) + \frac{1}{4} \beta_2^0 \left(\eta_1$$

59

$$+ \frac{1}{3} \beta_{3}^{0} \eta_{1} \eta_{2} (\eta_{1}^{2} - \eta_{2}^{2}) + \frac{1}{2} c_{ijkl}^{0} u_{ij} u_{kl} + \frac{1}{2} \chi_{33}^{0} P_{3}^{2} + \\ + \left[\frac{1}{\sqrt{2}} q_{10}^{(1)} (u_{11} + u_{22}) + q_{10}^{(2)} u_{33} \right] (\eta_{1}^{2} + \eta_{2}^{2}) + u_{12} \left[q_{60}^{(1)} \eta_{1} \eta_{2} + q_{60} (\eta_{1}^{2} - \eta_{2}^{2}) \right] + \\ + P_{3} \left[r_{0}^{(1)} \eta_{1} \eta_{2} + r_{0}^{(2)} (\eta_{1}^{2} - \eta_{2}^{2}) \right].$$

$$(1)$$

Квадратичная связь акустических деформаций с параметром порядка приводит к наличию скачков скоростей звука и возрастанию затухания по закону $(T - T_c)^{-1}$ в низкотемпературной фазе, что соответствует экспериментальным данным.

Расчеты критического поведения модулей упругости с учетом пространственно-неоднородных флуктуаций параметра порядка проводились в [1]. Однако влияние флуктуаций на линейные акустические параметры обычно значительно меньше релаксационного. Так, для скорости звука вблизи фазового перехода может наблюдаться температурная зависимость с критическим индексом $\varkappa \sim -1/2$. Вблизи перехода значительную роль в размытии температурных аномалий могут играть дефектный и доменный механизмы [2].

Характер поведения модулей упругости 3-го порядка в ГМО в основном определяется взаимодействием звука с флуктуациями параметра порядка. В кристаллах с квадратичной связью деформации с параметром порядка теория Ландау—Халатникова не приводит к какимлибо аномалиям модулей упругости 3-го порядка при переходах II рода и аномалии с критическим индексом $\varkappa = -3/2$ для перехода, близкого к трикритической точке [3]. Учет флуктуаций по теории Гинзбурга—Ландау приводит к критическому поведению модулей 3-го порядка $\Delta C_{ijk} \sim (T - T_c)^{-1.5}$. Решение методом ренормгруппы [4] дает значение критических индексов модулей 3-го порядка $\varkappa = -1, 1 \div -1, 4$.

Одним из наиболее распространенных методов экспериментального исследования критического поведения модулей упругости 3-го порядка является измерение 2-й акустической гармоники вблизи фазового перехода. Для ТМО в [5] было получено экспериментальное значение критического индекса $\varkappa = -1,5$. Однако вследствие того, что работа проводилась на частоте 530 МГн, определение модулей упругости 3-го порядка C_{iii} по амплитуде 2-й акустической гармоники в соответствии с формулой

$$u_{2\omega} = (3 + C_{iii}/c_{ii}) k u_0^2 \left[\exp\left(-\alpha_{\omega}l\right) - \exp\left(-\alpha_{2\omega}l\right) \right]$$
⁽²⁾

может дать ошибку, обусловленную наличием затухания звука вблизи фазового перехода (здесь k — волновое число, α_{ω} и $\alpha_{2\omega}$ — коэффициенты затухания 1-й и 2-й акустических гармоник, l — длина кристалла).

В наших экспериментах была выбрана рабочая частота 6 МГц. Измерения 2-й акустической гармоники проводились при помощи обычной импульсной методики. В качестве возбуждающего и приемного преобразователей использовались продольные излучатели из LiNbO₃ с резонансными частотами 6 и 12 МГц. Исследовались аномалии при распространении звука вдоль осей [110], [110] и [001]. Кристалл нагревался до температуры фазового перехода (160°С) и выше в термостате, который обеспечивал равномерное нагревание с постоянной скоростью ~0,1 град/мин. Вид температурной аномалии амплитуды 2-й акустической гармоники для продольной волны вдоль [110] u_{20} в критической области представлен на рис. 1 (кривая 1). На этом же рисунке (кривая 2) приведена температурная зависимость коэффициента затухания $\alpha_{2\omega}$ (при комнатной температуре $\alpha_{2\omega} = 0,7$ см⁻¹, а в парафазе $\alpha_{2\omega} = 0,4$ см⁻¹, что соответствует данным предыдущих исследований [6]).

Температурная зависимость аномалии модуля упругости $\Delta C_{1\tilde{1}1} = C_{1\tilde{1}1} - C_{1\tilde{1}1}^0$ вдоль направления [110] представлена на рис. 2. Аппроксимируя температурную зависимость $\Delta C_{1\tilde{1}1}(T)$ вблизи фазового перехода законом $(T - T_c)^{\varkappa_1\tilde{1}1}$, получаем значение критического индекса $\varkappa_{111} = -1,0\pm0,2$. Расчет по формуле (2) проводился в температурном интервале $0.5 < T - T_c < 10^{\circ}$ С, так как высокое затухание вблизи фазового

Рис. 1. Температурная зависимость амплитуды 2-й гармоники $u_{2\omega}$ (1) и коэффициента затухания $\alpha_{2\omega}$ (2) в ГМО в области фазового перехода (продольная волна, направление [110])

Рис. 2. Температурная зависимость аномалии модуля упругости 3-го порядка ($\Delta C_{111} = C_{111} - C_{111}^0$, где C_{111}^0 — значение C_{111}^0 вдали от точки перехода в парафазе) в ГМО в области фазового перехода ($T > T_c$)

перехода не позволяло проводить надежных измерений в непосредственной близости от критической температуры. Для оси [110] измеренный критический индекс оказался таким же, как и для направления [110]. Экспериментальное значение критического индекса при $T < < T_c$ получилось равным $\varkappa = -3,0\pm0,5$. Однако вследствие большого затухания в сегнетофазе в области фазового перехода эти данные не являются достаточно точными. При распространении звука вдоль направления [001] аномалий 2-й акустической гармоники и затухания звука не наблюдалось. Таким образом, экспериментально измеренное значение критического индекса ниже, чем приводится в [1], и согласуется с теорией [4].

В данном эксперименте особый интерес представляет область температур 80—140°С. Согласно исследованиям [7], в этом диапазоне в

кристалле ГМО происходят интенсивные процессы переполяризации, сопровождающиеся электрическими импульсами теплового эффекта Баркгаузена. Одновременно формируется видимая доменная структура в форме полос шириной порядка нескольких микрометров, направленных по осям [110] и [110]. Проведенные нами эксперименты по измерению количества импульсов акустической эмиссии в ГМО при изменении температуры показали, что наиболее интенсивные импульсы генерируются также в интервале температур 80-140°С. Гистограмма температурной зависимости числа импульсов акустической эмиссии при изменении температуры на 1°С представлена на рис. 3. Было замечено, что этой же области температур соответствуют увеличение амплитуды 2-й гармоники (~20%) и скачки фазы волны до 10%. Для сравнения аналогичные измерения были проведены в предварительно зажатом образце ГМО, в котором благодаря постоянному внешнему давлению вдоль оси [110], немного большему коэрцитивного, видимая доменная

Рис. 3. Гистограмма числа импульсов акустической эмнссии при нагревании кристалла ГМО на 1°С

структура в этих условиях не формировалась и сигналы акустической эмиссии не наблюдались. В монодоменном образце ГМО в области температур 80—140° С увеличение амплитуды 2-й гармоники и скачки фазы также не наблюдались. Вид температурной аномалии 2-й акустической гармоники в области перехода в зажатом кристалле не изме-Перечисленные нялся. явления можно объяснить взаимодействием звуковой волны с доменными грасегнетоэлектрика-сегнетоницами эластика ГМО при формировании доменной структуры.

Исследовано влияние также доменных границ на амплитуду 2-й акустической гармоники продольной и сдвиговых волн при комнатной температуре. Для этого в предварительно монодоменизированном кристалле ГМО перпендикулярно распространению звуковой волны с помощью неоднородного давления создавались домены. При этом оказалось, что амплитуда 2-й акустической гармоники продольной волны возрастает на 10% для

10 доменных границ, а гармоника сдвиговой поляризации, соответствующей спонтанной деформации u^{s}_{12} , возрастает на 50% по сравнению с исходной. Волна другой сдвиговой поляризации u_{13} не взаимодействовала с доменными границами, и увеличения 2-й акустической гармоники не происходило. При большем числе доменных границ (~10) наблюдалось насыщение и даже уменьшение сигнала 2-й акустической гармоники из-за увеличения доменного затухания и, возможно, интерференции волн 2-й гармоники, генерируемых при колебаниях разных доменных границ.

Таким образом, определяемое из аномалий 2-й акустической гармоники критическое поведение модулей упругости 3-го порядка в молибдате гадолиния в области парафазы удовлетворительно объясняется теорией. Домены не слишком сильно влияют на генерацию 2-й гармоники продольной волны, однако доменный вклад в амплитуду запрещенной по соображениям симметрии 2-й гармоники поперечной волны оказывается существенным, если деформация волны соответствует спонтанной деформации ГМО.

СПИСОК ЛИТЕРАТУРЫ

[1] Веіде Н., Кühnel А., Lorenz В.//Рнуз. Lett. 1983. 75, N 1. Р. 129—136. [2] Вихнин В. С., Рахимов И. К., Сарнацкий В. М., Чарная Е. В., Шутилов В. А.//Кристаллография. 1986. 31, № 1. С. 198—200. [3] Сердобольская О. Ю., Сериков В. И.//ФТТ. 1975. 17, № 2. С. 627—629. [4] Сахненко В. П., Тимонин П. Н.//ФТТ. 1982. 24, № 12. С. 3606—3612. [5] Есаян С. С., Лайхтман Б. Д., Леманов В. В., Маматкулов Н.//ФТТ. 1978. 20, № 9. С. 2823—2825. [6] Акустические кристаллы: Справочник. М., 1982. [7] Большакова Н. Н. и др.// //Изв. АН СССР, сер. физ. 1981. 45, № 9. С. 1666—1671.

Поступила в редакцию 01.12.86

ВЕСТН, МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1988. Т. 29, № 2

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 537.2

РАЗВИТИЕ МЕТОДОВ ЭМИССИОННОЙ ЭЛЕКТРОНИКИ ДЛЯ Диагностики высокотемпературных характеристик переходных металлов

Л. Ю. Голоскокова, Б. Б. Шишкин

(кафедра электроники)

Показано, что существует температурная зависимость тепловой энтропин образования точечных дефектов S и предложена методика определения S(T) по результатам измерения вольт-амперных характеристик токов рекомбинационной эмиссии.

Установлено [1], что экспериментальные вольт-амперные характеристики (ВАХ) плоскосимметричного диода с термокатодом из монокристаллов W, Мо и Nb становятся аномальными в области высоких температур катода $T \ge \Theta_{T^3}$ (Θ_{T^3} — характеристическая термоэмиссионная температура, определенная для каждой кристаллографической плоскости (грани) монокристалла). Установлено также, что начиная с $T = \Theta_{T^3}$ в спектре эмиссии появляется пик «быстрых» электронов [2].

Указанные особенности объясняет гипотеза рекомбинационной эмиссии (РЭ) [1]: при $T \ge \Theta_{T2}$ металл эмиттирует электроны, возбужденные за счет энергии, выделяющейся при рекомбинации пары точечных дефектов — вакансии и межузельного иона. Величина этой энергии превышает работу выхода основных граней исследованных переходных металлов на 2-3 эВ, поэтому возможна эмиссия электронов с начальными энертиями в несколько электрон-вольт. Этот эффект приводит к «сдвигу» Δ экспериментальных ВАХ в область отрицательных напряжений. Опыт показал, что величина Δ растет с температурой и примерно на порядок превышает то значение, которое следует из расчетов для максвелловской функции распределения эмиттированных катодом электронов по начальным энергиям в случае термоэлектронной эмиссии (ТЭЭ). Разделить явления РЭ и ТЭЭ можно лишь в области больших отрицательных напряжений, когда сильное электрическое поле тормозит термоэлектроны.