### УДК 539.186.2

# возбуждение зр<sup>53</sup>а уровней аргона в борновском приближении искаженных волн

В. В. Балашов, А. Н. Грум-Гржимайло, А. А. Храпов

(НИИЯФ)

В борновском приближении искаженных воли получены дифференциальные и полные сечения возбуждения 3p<sup>5</sup>3d(J=1) уровней аргона электронами промежуточной энергии. Рассмотрены электрон-фотонные корреляции при высвечивании этих уровней на основное и 3p<sup>5</sup>4p состояния.

Использование борновского приближения с искаженными волнами позволило понять [1] основные особенности возбуждения резонансных переходов 3p<sup>5</sup>4s в атомах аргона электронами промежуточной энергии. Распространим теоретический подход работы [1] на переходы 3p<sup>5</sup>3d: они представляют большой интерес как в плане общих спектроскопических задач, так и в связи с приложениями. К настоящему времени выполнены измерения полных и дифференциальных сечений возбуждения подуровней тонкой структуры состояния 3p<sup>5</sup>3d при неупругом рассеянии электронов в области энергии 26—100 эВ [2], однако их теоретический анализ на уровне современных возможностей теории электрон-атомных столкновений еще не проводился; известны лишь оценки полных сечений по полуэмпирическим формулам [3]. Раскрывая возможности борновского приближения искаженных волн на новом экс-



периментальном материале, мы ставим также перед собой задачу привлечь внимание экспериментаторов к проблеме комплексного изучения переходов  $3p^53d$ , которое включало бы корреляционные измерения типа (*e*,  $e'\gamma$ ), причем (в отличие от переходов  $3p^54s$ ) не только в ультрафиолетовом, но и в инфракрасном диапазоне.

Состояния 3p<sup>5</sup>4s и 3p<sup>5</sup>3d представляются сходными лишь на первый взгляд. В действительности степень нарушения LS-связи в p<sup>5</sup>d-

Рис. 1. Дифференциальное сечесостояний тонние возбуждения уровня кой структуры c f = 1Зр⁵3d для энергии электронов 100 эВ: борновское приближение исқаженных волн (сплошная линия), плосковолновое приближение Экспериментальные (пунктир).  $[2]: 1 - 3d'[3/2]_1,$ данные из  $2 - 3d[3/2]_{1}, 3 - 3d[1/2]_{0,1}$ 

конфигурации намного больше, чем в  $p^5s$ -конфигурации, а радиальная волновая функция *d*-электрона в отличие от волновой функции *s*-электрона в конфигурации  $p^5s$  может сильно зависеть от терма (явление «коллапса» [4]). Мы оставляем пока в стороне возможный эффект коллапса, но сильное смешивание *LS*-термов в состоянии  $3p^53d$  учитываем; при этом мы используем коэффициенты смешивания, полученные в работе [5] на основе модели промежуточной связи с не зависящими от терма радиальными волновыми функциями.

Сравнение рассчитанных дифференциальных сечений с результатами эксперимента при энергии падающих электронов 100 эВ показано на рис. 1 (в эксперименте [2] переход на уровень  $3d[1/2]_1$  не выделен, и его сечение дается вместе с вкладом близко лежащего уровня  $3d[1/2]_0$ ). Расчеты амплитуд возбуждения рассматриваемых уровней выполнены нами в тех же приближениях и с теми же параметрами искажающего оптического потенциала, что и в [1]. В частности, как и в работе [1], все обменные эффекты электрон-атомного взаимодействия учитываются включением в оптический потенциал локального слагаемого  $V_{\rm ex}(r)$ . Это значит, что вклад в сечение возбуждения уровней дают только переходы в <sup>1</sup>*P*-компоненту волновой функции, а следовательно, в сделанных приближениях форма дифференциальных сечений для всех трех рассматриваемых уровней с J=1 должна быть одной и той же; сама же вероятность их возбуждения пропорциональна весу компоненты  $3p^53d^1P_1$  (таблица).

| Энергия воз-<br>буждения, эВ | Beca LS — компонент<br>[5], %                           |                                                |                                                             |
|------------------------------|---------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|
|                              | 1 <sub>p</sub>                                          | 3 <sub>P</sub>                                 | <sup>3</sup> D                                              |
| 13,86                        | $ <^2$                                                  | 98                                             | $ <^2$                                                      |
| 14,15                        | 46                                                      | <2                                             | 53                                                          |
| 24,30                        | 53                                                      | 2                                              | .45                                                         |
|                              | Энергия воз-<br>буждения, эВ<br>13,86<br>14,15<br>24,30 | Энергия воз-<br>буждения, эВ Веса І   13,86 <2 | Энергия воз-<br>буждения, эВ Beca LS - ком<br>1p   13,86 <2 |

Подуровни тонкой структуры состояния  $3p^53d$  (J = 1) в атоме аргона

Главный вывод, который следует из сравнения теории с экспериментом, состоит в том, что при энергии порядка 100 эВ обменная амплитуда возбуждения состояний  $3p^{53}d$  (связанная не только с <sup>1</sup>*P*, но также с <sup>3</sup>*P* и с <sup>3</sup>*D*-компонентами) значительно меньше амплитуды «прямого», необменного рассеяния; последняя в свою очередь неплохо описывается в борновском приближении искаженных волн. Действительно, выполненный расчет вполне удовлетворительно воспроизводит общую форму дифференциальных сечений при возбуждении состояний  $3d [3/2]_1$  и  $3d' [3/2]_1$ , где компонента <sup>1</sup>*P* велика, а также относительную вероятность возбуждения. этих двух состояний. Что же касается перехода в состояние  $3d [1/2]_1$ , доля <sup>1</sup>*P*-компоненты в котором составляет лишь 2%, то он значительно слабее переходов в состояния  $3d[3/2]_1$  и  $3d' [3/2]_1$  и характеризуется совершенно иной формой дифференциального сечения. При уменьшении энергии электронов рассогласование теоретических и экспериментальных сечений усиливается.

В соответствии с заключениями работы [1] полные сечения возбуждения уровней  $3d[3/2]_1$  и  $3d'[3/2]_1$ , рассчитанные в настоящей работе, весьма чувствительны к величине мнимой части оптического потенциала. При параметрах, взятых из работы [1], они оказываются выше экспериментальных примерно втрое. Хотя экспериментальные данные нуждаются в дальнейшем уточнении, необходимо и теоретическое исследование упомянутого выше эффекта коллапса (чему мы посвятим отдельную работу). Так или иначе, вопрос о согласованном теоретическом описании полных вероятностей переходов в состоянии  $3p^54s$  и  $3p^53d$  с использованием единого оптического потенциала остается пока открытым.

При его решении большую пользу могут принести корреляционные эксперименты (*e*, *e'*γ), поскольку известно (см., напр., [1], а также [7]), что параметры электрон-фотонной корреляции особенно чувстви-



тельны и к деталям структуры атома, и к особенностям взаимодействия между атомом и рассеиваемым электроном. Выполненные нами расчеты показывают, что общее поведение корреляционных параметров  $\lambda$  и  $\chi$ , а следовательно, угловые и поляризационные характеристики фотонов, излучаемых на основное состояние, для уровней  $3p^53d$  и  $3p^54s$  сходны. Мы также рассмотрели вопрос об

Рис. 2. Степень циркулярной (a) и линейной (б) поляризации излучения в переходах  $3p^53d$  (J=1) $\rightarrow 3p^54p$  (J'=0, 1, 2): J=1 $\rightarrow$ J'= =0,1 (сплошная линия); J=1 $\rightarrow$ J'=2 (пунктир)

электрон-фотонной корреляции в инфракрасном диапазоне при девозбуждении состояний  $3p^53d$  на лежащие ниже возбужденные состояния конфигурации  $3p^54p$ .

Как пример, на рис. 2 приведена зависимость степени циркулярной  $(P_c)$  и линейной  $(P_L)$  поляризации излучения, соответствующего переходам из состояния  $3p^53d$  (J=1) на уровни  $3p^54p$  (J'=0, 1, 2). Расчет проведен для случая, когда фотоны вылетают перпендикулярно плоскости рассеяния, а для нахождения  $P_L$  их поляризация анализируется параллельно и перпендикулярно падающему пучку.

В модели, в которой ориентация состояния  $3p^53d$  (J=1) описывается двумя параметрами ( $\lambda$  и  $\chi$ ), результаты для переходов  $J=1 \rightarrow J'=0$  и  $J=1 \rightarrow J'=1$  совпадают, а для перехода  $J=1 \rightarrow J'=2$  отличаются от них лишь постоянным множителем

$$P_c(1 \rightarrow 2) = -\frac{5}{7} P_c(1 \rightarrow 0, 1); \quad P_L(1 \rightarrow 2) = \frac{1}{7} P_L(1 \rightarrow 0, 1).$$

Можно предположить, что проведенные в данной работе теоретические оценки для корреляционных характеристик процесса (e,  $e'\gamma$ ) в инфракрасном диапазоне будут способствовать проведению экспериментальных исследований в этом, пока еще совсем не разведанном, направлении атомной спектроскопии.

## СПИСОК ЛИТЕРАТУРЫ

[1] Balashov V. V., Berezhko E. G., Kabachnik N. M., Magunov A. I.//J. Phys. B. 1981. 14. P. 357-364. [2] Chutjian A., Cartwright D. C.// //Phys. Rev. 1981. A23. P. 2178-2193. [3] Peterson L. R., Allen J. E.//J. Chem. Phys. 1972. 56. Р. 6068—6073. [4] Каразия Р. И.//УФН. 1981. 135. С. 79—115. [5] Martin N. L. S.//J. Phys. B. 1984. 17. Р. 163—177. [6] Moore C. E. Atomic energy levels. NBS circular 467. V. 1. Washington, 1949. [7] Balashov V. V., Kozhevnikov I. V., Magunov A. I.//J. Phys. B. 1981. 14. Р. 2059—2067.

Поступила в редакцию 11.11.87

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1988. Т. 29, № 2

#### ОПТИКА И СПЕКТРОСКОПИЯ

#### УДК 621.373:535

## ИССЛЕДОВАНИЕ ВЫНУЖДЕННОГО ИЗЛУЧЕНИЯ И ВКР В ИК ОБЛАСТИ СПЕКТРА ПРИ НЕРЕЗОНАНСНОМ ЗАСЕЛЕНИИ УРОВНЕЙ АТОМОВ Rb и Cs

#### Т. С. Бимагамбетов, В. И. Одинцов

(кафедра оптики и спектроскопии)

Экспериментально и теоретически исследованы энергетические характеристики вынужденного ИК излучения и ИК ВКР в парах Rb и Cs при возбуждении в условиях нерезонансного заселения начальных уровней.

В работах [1—3] было установлено, что вынужденное излучение на инфракрасном (ИК) атомном переходе Rb  $6^2P_{3/2}$ — $5^2D_{5/2}$  (рнс. 1, *a*) может быть получено при перестройке частоты накачки  $\omega_L$  не только в окрестности двухфотонного резонанса  $5^2S_{1/2}$ — $5^2D_{5/2}$ , но и в широкой области, включающей однофотонные резопансы  $5^2S_{1/2}$ — $5^2P_{3/2}$  и  $5^2P_{3/2}$ — $5^2D_{5/2}$ . Можно предположить, что при удалении  $\omega_L$  от двухфотонного резонанса засти. Вихимить, что при удалении  $\omega_L$  от двухфотонного резонанса заселение верхнего уровня  $5^2D_{5/2}$  происходит с участием оптикостолкновительных (ОС) переходов [4], показанных на рис. 1 волнистыми стрелками. Вследствие относительно небольших частотных расстроек эффективность таких переходов оказывается достаточно велика. Так, при  $\omega_L \approx \omega_{23}$  (см. цифровые обозначения уровней на рис. 1, *a*,  $\omega_{ij}$ — частота перехода i-j) расстройка  $\Delta_{12} = \omega_L - \omega_{12} \approx 70$  см<sup>-1</sup>

и оценка в рамках ударной теории дает при плотности атомов  $N = 5 \cdot 10^{15}$  см<sup>-3</sup> и интенсивности накачки  $I_L = 10$  МВт/см<sup>2</sup> населенность уровня 2  $N_2 \sim 0,1$  N. Об эффективном нерезонансном; заселения уровня 2 свидетельствует и и возбуждение с этого уровня ИК ВКР на частоте  $\omega_S$  (см. рис. 1, a) [2].

Для подтверждения указанного механизма возникновения ИК излучения была исследована зависимость интенсивности линии  $6^2 P_{3/2} - 5^2 D_{5/2}$  ( $\lambda = 5.23$  MKM) OT плотности атомов N и интенсивности накачки  $I_L$  при  $\omega_L = \omega_{23}$ . Источником накачки служил лазер на красителе с длительностью импульса т<sub>L</sub>=25 нс и шириной спектра генерация 0,2 см-1. Диаметр светового пучка в кювете длиной *l*=20 см составлял 3 мм. Максимальная интенсивность накачки равнялась З МВт/см<sup>2</sup>. Плотность атомов изменялась от 2.8 · 10<sup>15</sup>  $(t=230^{\circ} C)$ 1,0.1016 см-3 до



Рис. 1. Схемы энергетических уровней атомов Rb (a) и Cs (б)

 $(t=270^{\circ} \text{ C})$ . Эксперимент показал, что энергия линии 5,23 мкм  $W \sim I_L N^2$ . Поскольку при  $\omega_L = \omega_{23}$  вероятность перехода атомов с уровня 2 на уровень 3  $w_{23}$  велика ( $w_{23}\tau_L \gg 1$ ), то мощность ИК излучения на переходе 4—3 определяется скоростью