$|\Delta \vartheta| \ll \Delta \vartheta_c / \sqrt{b}$ и аномального проникновения $\Delta \vartheta \approx -\Delta \vartheta_c (1+b)/2 \sqrt{b} \epsilon_h$ разнесены. Провал вблизи $\Delta \vartheta \approx 0$ исчезает, в области $\Delta \vartheta \approx \Delta \vartheta_0$ появляется четко выраженный минимум при КР в пленке, что облегчает регистрацию и анализ кривых КР при малых $\Delta d/d$. Отметим, что в отличие от кривых отражения угловые зависимости КР не искажены диффузным рассеянием на дефектах структуры пленки.

Таким образом, в настоящей работе впервые дано теоретическое рассмотрение дифракционных особенностей в угловых зависимостях КР и ТДР в кристаллах с нарушенным поверхностным слоем. Ввиду большой глубины выхода НР по сравнению с Le эти кривые менее информативны, чем кривые фотоэлектронной эмиссии, однако чувствительность КР возрастает с использованием дальних порядков отражения и, в большей степени, в условиях резко асимметричной дифракции.

СПИСОК ЛИТЕРАТУРЫ

[1] Афанасьев А. М., Кон В. Г.//ЖЭТФ. 1978. 74, № 1. С. 300. [2] Ко-вальчук М. В., Кон В. Г.//УФН. 1986. 149, № 1. С. 69. [3] Созонтов Е. А., Круглов М. В., Захаров Б. Г.//Электронная техника. Сер. 6, Материалы. 1979. № 7 (132). С. 108. [4] Коhn V. G., Коvalchuk М. V./Phys. Stat. Sol. (a). 1981. 64, N 1. P. 359. [5] Коhn V. G., Коvalchuk М. V., Ітатоv R. М. et al./Phys. Stat. Sol. (a). 1982. 71, N 2. P. 603. [6] Ковальчук М. В., Кон В. Г., Лобано-вич Э. Ф.//ФТТ. 1985. 27, № 11. С. 3379. [7] Golovchenko J. A., Batter-man B. W., Brown W. L./Phys. Rev. 1974. B10, N 10. P. 4239. [8] Ander-sen S. K., Golovchenko J. A., Mair G.//Phys. Rev. Lett. 1976. 37, N 17. P. 1141. [9] Afanasev A. M., Kovalchuk M. V., Kovev E. K., Kohn V. G.//Phys. Stat. Sol. (a). 1977. 42, N 1. P. 415. [10] Kohn V. G., Kovalchuk M. V., Ima-mov R. M. et al.//Ibid. 1981. 64, N 2. P. 435. [11] Belyaev Yu. N., Kolpa-kov A. V.//Ibid. 1983. 76, N 2. P. 641. [12] Annaka S., Kikuta S., Kohra K.//J. Phys. Soc. Japan. 1966. 21, N 8. P. 1559. [13] Schulke W., Bonse U., Mouri-kis S./Phys. Rev. Lett. 1981. 47, N 17. P. 1209. [14] Afanas'ev A. M., Azi-zian S. L./Acta Cryst. 1981. A37, N 1. P. 125. [15] Бушуев В. А., Люби-мов А. Г., Кузьмин Р. Н.//Письма в ЖТФ. 1986. 12, № 3. С. 141. [16] Афа-насьев А. М., Имамов Р. М., Мухамеджанов Э. Х., Ле Конг Куи// //ДАН СССР. 1986. 288, № 4. С. 847. [17] Бушуев В. А., Айт А. О.//Вестн. Моск. ун-та. Физ. Астрон. 1986. 27, № 5. С. 61.

Поступила в редакцию 01.06.87

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1988. Т. 29. № 6

УДК 537.611.44

СОЛИТОНЫ В ДОМЕННОЙ СТЕНКЕ

Л. И. Актонов, А. Н. Матвеев, П. А. Поляков

(кафедра общей физики для физического факультета)

Показана возможность существования в доменной стенке массивного магнитного образца нелинейной динамической структуры солитонного вида.

Хорошо известно, что в доменных стенках (ДС) магнитных материалов могут существовать возмущения двух видов: линии Блоха и спиновые волны [1]. Эти структуры представляют большой научный и практический интерес и интенсивно изучаются В настоящее время [1-3]. Однако, согласно общим положениям теории диспергирующих волн, можно сделать предположение, что указанные структуры в ДС не являются единственно возможными, так как при определенных условиях в диспергирующих средах могут существовать солитоны [4]. Данная работа посвящена изучению этого вопроса.

Для описания динамического поведения доменной стенки массивного ферромагнитного образца воспользуемся уравнениями Слончевского [1]

$$q_t = 2\gamma\Delta\left(\pi M\sin 2\varphi - \frac{A}{M}\varphi_{zz}\right) + \alpha\Delta\varphi_t,\tag{1}$$

$$\varphi_t = \gamma \, \frac{2A}{M\Delta} \, q_{zz} - \frac{aq_t}{\Delta}, \tag{2}$$

где координатные оси выбраны таким образом, чтобы невозмущенная ДС совпала с координатной плоскостью XOZ; q = q(t, z) — положение середины ДС, $\varphi = \varphi(t, z)$ — величина азимутального угла вектора намагниченности M; γ — гиромагнитное отношение; A — константа обменного взаимодействия; $\Delta = (A/K)^{1/2}$ — эффективная ширина ДС; K — константа одноосной анизотропии; α — параметр затухания; q_t , φ_t , q_{zz} , φ_{zz} — частные производные функций q(t, z), $\varphi(t, z)$ по времени t и координате z.

Отметим, что уравнения Слончевского (1), (2) являются адиабатическим приближением к уравнению Ландау—Лифшица. Следовательно, эти уравнения справедливы для описания структур, характерные градиенты которых много меньше градиентов в направлении, перпендикулярном плоскости самой ДС. Кроме этого, необходимо, чтобы эффективная ширина ДС существенно не изменялась с течением времени, что справедливо для материалов с большим фактором качества $Q = K/2\pi M^2 \gg 1$.

Перейдем в (1) и (2) к безразмерным величинам по формулам

$$q' = q/\Delta, \quad z' = z/\delta, \quad t' = t\omega_M, \tag{3}$$

где $\delta = (A/2\pi M^2)^{1/2}$ — эффективная ширина стационарной горизонтальной блоховской линии (ГБЛ), $\omega_M = \gamma \cdot 4\pi M$. Тогда система уравнений (1), (2) примет вид

$$q'_{t'} = \frac{1}{2} \sin 2\varphi - \varphi_{z'z'} - \alpha \varphi_{t'}, \qquad (4)$$

$$\varphi_{t'} = q'_{z'z'} - \alpha q'_{t'}. \tag{5}$$

Пренебрежем в уравнениях (4), (5) членами с параметром затухания α и будем искать их решения в виде

$$q' = q'(\xi), \ \varphi = \varphi(\xi), \ \xi = z' - \varepsilon t'.$$
 (6)

В этом случае из (4) и (5) находим

$$-\varepsilon q'_{\xi} + \frac{1}{2}\sin 2\varphi - \varphi_{\xi\xi}, \tag{7}$$

$$q'_{\rm s} = -\varepsilon \varphi + C, \tag{8}$$

где C — константа интегрирования. Ограничимся рассмотрением только таких структур, для которых C=0. Тогда, подставляя (8) в (7), для азимутального угла вектора намагниченности середины ДС находим обыкновенное дифференциальное уравнение

$$\varphi_{\xi\xi} + \varepsilon^2 \varphi - \frac{1}{2} \sin 2\varphi = 0. \tag{9}$$

Первый интеграл уравнения (9) имеет вид

$$\varphi_t^2 + \varepsilon^2 \varphi^2 - \sin^2 \varphi = E,$$

где *E* — константа интегрирования, значение которой находится из граничных условий.

Пусть граничные условия таковы, что

$$\varphi_{\xi}(\xi = \pm \infty) = 0, \quad \varphi(\xi = -\infty) = 0, \quad \varphi(\xi = +\infty) = \pi,$$
 (11)

тогда уравнение (10) будет удовлетворять этим условиям, если $\varepsilon = 0$ и E = 0. Решение (11) в этом случае описывает хорошо известную нелинейную структуру, называемую ГБЛ [1]:

$$\varphi = 2 \arctan(\xi) = 2 \arctan(z/\delta).$$
(12)

Однако решение (11) не является единственно возможной нелинейной динамической структурой в ДС. Действительно, рассмотрим другие физически оправданные граничные условия [4]:

$$\varphi_{\xi}(\xi = \pm \infty) = \varphi(\xi = \pm \infty) = 0.$$
⁽¹³⁾

В этом случае уравнение (10) будет удовлетворять условиям (12), если только константа E=0. Тогда, интегрируя уравнение (10), находим два симметричных солитонных решения:

$$\int_{\varphi_0}^{\varphi(\xi)} \frac{d\varphi}{\sqrt{\sin^2 \varphi - \varepsilon^2 \varphi^2}} = \pm \xi, \quad \int_{-\varphi_0}^{-\varphi(\xi)} \frac{d\varphi}{\sqrt{\sin^2 \varphi - \varepsilon^2 \varphi^2}} = \pm \xi, \quad (14)$$

где константа φ₀ (амплитуда солитона) равна максимальному азимутальному углу отклонения вектора намагниченности середины ДС. Величина амплитуды φ₀ однозначно связана с безразмерной скоростью распространения солитона є вдоль ДС:

$$\sin^2 \varphi_0 = \epsilon^2 \varphi_0^2. \tag{15}$$

Из уравнения (15) следует, что величина безразмерной скорости распространения солитона є не может быть больше единицы: $\varepsilon < 1$, в противном случае уравнение (15) не будет иметь решений, а уравнения (14) и (10) будут бессмысленными. Выражение скорости распространения солитона для размерных переменных легко получить, используя обозначения (3). Полагая в функциях (6) постоянной фазу: $\xi = z' - \varepsilon t' = \text{const, находим}$

$$v_c = \frac{dz}{dt} = \frac{dz'}{dt'} \,\delta\omega_M = \varepsilon \delta\omega_M. \tag{16}$$

Выражение (16) с учетом обозначений для δ и ω_M можно записать иначе:

$$\boldsymbol{v}_{c} = 2\varepsilon \sqrt{Q} \, \boldsymbol{v}_{\boldsymbol{w}},\tag{17}$$

где $v_w = \Delta \gamma \cdot 2\pi M$ — предельная уокеровская скорость для доменной стенки. Таким образом, скорость распространения солитона не может превышать максимального значения $v_{c \max} = 2 \sqrt{Q} v_w$, которое в $2 \sqrt{Q}$ раз больше предельной скорости Уокера v_w распространения самой ДС. Величина скорости солитона зависит от его амплитуды и при $\varphi_0 \rightarrow \pi$ стремится к нулю, так как, согласно уравнению (15), $\varepsilon \rightarrow 0$ при $\varphi_0 \rightarrow \pi$.

5 ВМУ, № 6, физика, астрономия

В другом предельном случае, когда $\varphi_0 \rightarrow 0$, $\epsilon \rightarrow 1$ и, следовательно, скорость солитона стремится к его максимальному значению.

В области нахождения солитона доменная стенка изгибается. Форму изгиба легко определить, используя уравнение (8):

$$q'(\xi) = -\varepsilon \int_{-\infty}^{\xi} \varphi(\xi') d\xi'.$$
(18)-

Рассмотрим вопрос о правомерности описания структур (14) в рамках уравнений Слончевского. Для этого необходимо сравнить характерные градиенты неоднородности данной структуры с характерными градиентами в направлении, перпендикулярном самой ДС. Из (14) находим, что

$$\frac{d\varphi\left(\xi\right)}{d\xi} = \sqrt{\sin^2\varphi - \varepsilon^2\varphi^2} \leqslant 1.$$
(19)*

Отсюда с учетом обозначений (3) имеем $d\varphi/dz \ll 1/\delta$. В то же время градиенты в направлении, перпендикулярном ДС, для материалов с большим фактором качества Q определяются структурой классической границы Ландау—Лифшица [1] и равны $d\theta(y)/dy \sim 1/\Delta$, где $\theta(y)$ — полярный угол вектора намагниченности, а координатная ось y направлена перпендикулярно ДС. Учитывая далее, что $\delta^2/\Delta^2 = Q \gg 1$, убеждаемся, что max $|d\varphi/dz| \ll max|d\theta(y)/dy|$ и, следовательно, найденные солитонные структуры (14) лежат в области применимости теории Слончевского.

Если амплитуда солитона мала: $\varphi_0 \ll 1$, то, согласно (19), $d\varphi/dz = \sqrt{1-\epsilon^2} \varphi/\delta \ll 1/\delta$. Поэтому градиент неоднородности, вызванной малоамплитудным солитоном в ДС, будет много меньше градиента, обусловленного солитоном большой амплитуды или ГБЛ. Таким образом, теория Слончевского для описания рассмотренных солитонных структур справедлива с еще большей точностью.

Форму солитона (14) можно вычислить аналитически только в частном случае малых амплитуд, когда $\varphi_0 \ll 1$. В этом случае, учитывая, что $\varepsilon \approx 1$, и полагая sin $\varphi = \varphi - \varphi^3/3!$, находим

$$\sin^2 \varphi - \epsilon^2 \varphi^2 = \varphi^2 \, (\varphi_0^2 - \varphi^2)/6, \tag{20}$$

где $\varphi_0^2 = 6(1-\epsilon)$. Подставляя (20) в (14) и проводя вычисления, найдем

$$\varphi\left(\xi\right) = \pm \frac{\varphi_{0}}{\operatorname{ch}\left(\xi\varphi_{0}/\sqrt{6}\right)}.$$
(21)

Из выражения (21) следует, что малоамплитудный солитон сосредоточен в области $|\xi|\phi_0/\gamma 6 \sim 1$. Отсюда, учитывая обозначения (3), для эффективной ширины солитона находим величину порядка $\delta \sqrt{6}/\phi_0$, которая много больше эффективной ширины ГБЛ и стремится к бесконечности при $\phi_0 \rightarrow 0$.

В рассмотренном случае легко находится и форма изгиба ДС, обусловленная солитоном. Подставляя (21) в (17), получим

$$q'(\xi) = -2\sqrt{6} \operatorname{arctg} \exp\left(\xi\varphi_0/\sqrt{6}\right). \tag{22}$$

Переходя в (22) к размерным переменным, найдем

$$q(z-v_ct) = -\Delta 2\sqrt[4]{6} \operatorname{arctg} \exp\left[\varphi_0(z-\varepsilon 2\sqrt[4]{Q}v_w t)/\delta\sqrt[4]{6}\right].$$
(23)

Из формулы (23) видно, что при прохождении малоамплитудного солитона вдоль ДС она сдвигается на величину $-\Delta\sqrt{6\pi}$.

Рассмотрим солитоны, амплитуда которых близка к предельной величине $\varphi_0 \approx \pi$. В этом случае $\varepsilon \ll 1$, и поэтому для большей части области значений аргумента φ подынтегральной функции в (14) можно пренебречь слагаемым $\varepsilon^2 \varphi^2$. Следовательно, форма солитона в указанной области будет близка к структуре, состоящей из двух связанных ГБЛ противоположной полярности. Эффективные размеры солитона можно оценить, вычислив $\varphi(\xi)$ вблизи угла φ_0 . Для этого положим $\varphi = \pi - \alpha$ и, учитывая, что sin $\varphi \approx \alpha$, из (14) получим

$$\varphi(\xi) = \pi - \epsilon \pi \operatorname{ch}(\xi).$$

(24)

Из формулы (24) для эффективной ширины солитона $\Delta z = \Delta \xi \delta$, т. е. области, где $\varphi(\xi) \sim \pi$, находим

$$\Delta z \sim 2\delta \ln (1/\epsilon \pi). \tag{25}$$

Таким образом, эффективная ширина солитона с амплитудой $\varphi_0 \sim \pi$ в 2 ln (1/ $\epsilon \pi$) раз больше ширины ГБЛ.

Сдвиг доменной стенки, обусловленный солитоном рассмотренного вида, можно оценить с помощью формул (18) и (25):

$$q(+\infty) = -\varepsilon\Delta \int_{-\infty}^{+\infty} \varphi(\xi) d\xi \sim -\varepsilon\Delta \int_{-\ln(1/\varepsilon\pi)}^{\ln(1/\varepsilon\pi)} \pi d\xi = 2\varepsilon\Delta\pi \ln\frac{1}{\varepsilon\pi}.$$
 (26)

Из (26) видно, что величина изгиба ДС при наличии в ней солитона с амплитудой φ~π меньше толщины самой ДС в 2εln (1/επ) раз.

Следует отметить, что кроме рассмотренных решений уравнение (10) при $E \neq 0$ может иметь периодические решения, описывающие нелинейные волны намагниченности в ДС. Длина волны λ данных периодических структур и форма волны $\varphi(\xi)$, согласно (10), имеют вид

$$\lambda = 2 \int_{-\varphi_0}^{+\varphi_0} \frac{d\varphi}{\sqrt{E + \sin^2 \varphi - \varepsilon^2 \varphi^2}}, \quad \int_{-\varphi_0}^{\varphi(\xi)} \frac{d\varphi}{\sqrt{E + \sin^2 \varphi - \varepsilon^2 \varphi^2}} = \xi, \tag{27}$$

где амплитуда волны φ_0 определяется из решения уравнения $E + \sin^2 \varphi_0 - \epsilon^2 \varphi_0^2 = 0$. Безразмерная скорость распространения данных нелинейных волн, в отличие от солитонов, может быть и больше единицы: $\epsilon > 1$.

Из формул (27) в частном случае малых амплитуд нетрудно получить известные уравнения для линейных волн в ДС [1]

$$\varphi\left(\xi\right) = -\varphi_0 \cos\left(kz - \omega t\right),\tag{28}$$

где

$$\varphi_0 = \sqrt{E/(\epsilon^2 - 1)}, \quad k = \sqrt{\epsilon^2 - 1}/\delta, \quad \omega = \sqrt{\epsilon^2 - 1} \epsilon \omega_M.$$
 (29)

Из соотношений (29) для дисперсии данного вида волн находим

$$\omega = k\delta \sqrt{k^2 \delta^2 + 1} \,\,\omega_M,\tag{30}$$

что совпадает в рассмотренном приближении с аналогичным выражением в [1].

В заключение укажем, что найденные результаты получены в пренебрежении диссипацией и градиентом магнитного поля. Для малых параметров затухания и градиентов магнитного поля эти эффекты могут быть учтены в рамках теории, развитой в работах [5, 6].

СПИСОК ЛИТЕРАТУРЫ

[1] Малоземов А., Слонзуски Дж. Доменные стенки в материалах с цилиндрическими доменами. М., 1982. [2] Недлин Г. М., Шапиро Р. Х.//ФТТ. 1975. 17. С. 2076. [3] Копізні S.//IEEE. 1983. MAG-19. Р. 1838. [4] Бхатнагар П. Нелинейные волны в одномерных дисперсионных средах. М., 1983. [5] Четкин М. В. и др.//Письма в ЖЭТФ. 1987. 45. С. 597. [6] Звездин А. К., Попков А. Ф.// //ЖЭТФ. 1986. 91. С. 1789.

Поступила в редакцию 01.06.87

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1988. Т. 29, № 6

УДК 538,653.11:546.663

ВЛИЯНИЕ ВСЕСТОРОННЕГО ДАВЛЕНИЯ НА НАМАГНИЧЕННОСТЬ МОНОКРИСТАЛЛА ТЕРБИЯ

С. А. Никитин, Р. В. Бездушный

(кафедра общей физики для естественных факультетов)

Исследовано влияние всестороннего давления на намагниченность монокристалла Тb. Обнаружена гигантская объемная магнитострикция $\sim 650\cdot 10^{-6}$. Установлено, что зависимость константы магнитной анизотропии K₆ от давления описывается одноионной теорией магнитной анизотропии.

Изучение влияния всестороннего давления на магнитные свойства редкоземельных металлов (P3M) и их сплавов до сих пор ограничивалось определением смещения температур магнитных превращений, при этом измерения намагниченности проводились в слабых магнитных полях и измерялась, по существу, зависимость магнитной проницаемости от давления в области температур Кюри и Нееля [1]. Вследствие гроанизотропии РЗМ даже в области сравнительно мадной магнитной сильных магнитных полей ~ 25 кЭ при измерениях эффекта изменения намагниченности под действием давления на поликристаллических образцах РЗМ [2, 3] невозможно достаточно точно разделить вклады в этот эффект, обусловленные влиянием давления на константы магнитной анизотропии и на намагниченность насыщения. Для решения этой задачи необходимо изучить данный эффект на монокристаллических образцах РЗМ в магнитных полях, достаточных по величине для магнитного насыщения. Такие исследования позволяют получить важную для проверки теоретических моделей информацию о зависимости интегралов обменного взаимодействия и констант магнитной анизотропии от атомного объема.

В настоящей работе проведено систематическое исследование изменения удельной намагниченности о под действием всестороннего давления до 10¹⁰ дин/см² (До-эффект) в монокристалле тербия. Приготовление монокристаллов тербия и контроль их структуры описаны в работе [4]. Ориентировка монокристаллов осуществлялась рентгеновским методом. Измерения проводились в области температур 80—330 К в магнитных полях до 14 кЭ, которые были достаточны для насыщения намагниченности вдоль кристаллографических осей а и b базисной илоскости гексагональной кристаллической решетки тербия.