В заключение укажем, что найденные результаты получены в пренебрежении диссипацией и градиентом магнитного поля. Для малых параметров затухания и градиентов магнитного поля эти эффекты могут быть учтены в рамках теории, развитой в работах [5, 6].

СПИСОК ЛИТЕРАТУРЫ

[1] Малоземов А., Слонзуски Дж. Доменные стенки в материалах с цилиндрическими доменами. М., 1982. [2] Недлин Г. М., Шапиро Р. Х.//ФТТ. 1975. 17. С. 2076. [3] Копізні S.//IEEE. 1983. MAG-19. Р. 1838. [4] Бхатнагар П. Нелинейные волны в одномерных дисперсионных средах. М., 1983. [5] Четкин М. В. и др.//Письма в ЖЭТФ. 1987. 45. С. 597. [6] Звездин А. К., Попков А. Ф.// //ЖЭТФ. 1986. 91. С. 1789.

Поступила в редакцию 01.06.87

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1988. Т. 29, № 6

УДК 538,653.11:546.663

ВЛИЯНИЕ ВСЕСТОРОННЕГО ДАВЛЕНИЯ НА НАМАГНИЧЕННОСТЬ МОНОКРИСТАЛЛА ТЕРБИЯ

С. А. Никитин, Р. В. Бездушный

(кафедра общей физики для естественных факультетов)

Исследовано влияние всестороннего давления на намагниченность монокристалла Тb. Обнаружена гигантская объемная магнитострикция $\sim 650\cdot 10^{-6}$. Установлено, что зависимость константы магнитной анизотропии K₆ от давления описывается одноионной теорией магнитной анизотропии.

Изучение влияния всестороннего давления на магнитные свойства редкоземельных металлов (P3M) и их сплавов до сих пор ограничивалось определением смещения температур магнитных превращений, при этом измерения намагниченности проводились в слабых магнитных полях и измерялась, по существу, зависимость магнитной проницаемости от давления в области температур Кюри и Нееля [1]. Вследствие гроанизотропии РЗМ даже в области сравнительно мадной магнитной сильных магнитных полей ~ 25 кЭ при измерениях эффекта изменения намагниченности под действием давления на поликристаллических образцах РЗМ [2, 3] невозможно достаточно точно разделить вклады в этот эффект, обусловленные влиянием давления на константы магнитной анизотропии и на намагниченность насыщения. Для решения этой задачи необходимо изучить данный эффект на монокристаллических образцах РЗМ в магнитных полях, достаточных по величине для магнитного насыщения. Такие исследования позволяют получить важную для проверки теоретических моделей информацию о зависимости интегралов обменного взаимодействия и констант магнитной анизотропии от атомного объема.

В настоящей работе проведено систематическое исследование изменения удельной намагниченности о под действием всестороннего давления до 10¹⁰ дин/см² (До-эффект) в монокристалле тербия. Приготовление монокристаллов тербия и контроль их структуры описаны в работе [4]. Ориентировка монокристаллов осуществлялась рентгеновским методом. Измерения проводились в области температур 80—330 К в магнитных полях до 14 кЭ, которые были достаточны для насыщения намагниченности вдоль кристаллографических осей а и b базисной илоскости гексагональной кристаллической решетки тербия.

В тербии в области температуры перехода из парамагнитного в антиферромагнитное состояние с геликоидальной магнитной структурой [5] наблюдаются максимальные значения До-эффекта (рис. 1).

В области температуры Нееля удельная намагниченность тербия в магнитном поле *H*=1 кЭ при действии всестороннего давления P=9,5.10⁹ дин/см² изменяется в несколько раз (рис. 2). Сильное влияние давления на удельную намагниченность в области фазового пере-

Рис. 1. Зависимость Δσ-эффекта от температуры при различных значениях магнитного поля вдоль оси a: H = 1 (1) и 13 кЭ (2); кри-вая $3 - \partial \sigma / \partial P$, вычисленная по формуле (1). Для удобства вос-приятия здесь и на рис. З приведены обратные по знаку значения Δσ-эффекта

Кривые на-Рис. 3. Зависи-MOHOмость До-эффекта кристалла тербия при от магнитного по-**H**||**a**: 1 - T = 80 K, $P = 10^{6}$ дин/см²; 2 - T = 80 K, $P = 8 \cdot 10^{9}$ ЛЯ Hlla: T = 230(1); 225 (2), 235 (3), 250 (4), 803 — T= (5) и 150 К (6) $P = 10^{6}$ 4 - T =

НкЗ

хода из парамагнитного состояния в магнитоупорядоченное в тербии объясняется резкой зависимостью этого перехода от атомного объема.

Рис. 2.

дин/см²;

дин/см²; 228

= 228

магничивания

K,

К, – лин/см²

 $P = 9.5 \cdot 10^9$

исследования К. П. Белова Ранее обширные [6] показали. значения $\Delta \sigma$ -эффекта 3*d*-металлов максимальные сплавах ЧТО В имеют место в инварных сплавах (например, для сплава 32% Ni68% Fe $\partial\sigma/\partial P = 1,02 \cdot 10^{-9}$ Гс · см⁵ · г⁻¹ · дин⁻¹ при H = 1 кЭ). Из наших данных вытекает, что $\Delta \sigma$ -эффект в тербии значительно превосходит величины этого эффекта в 3d-металлах и их сплавах ($\partial \sigma / \partial P =$ $=-6,1\cdot 10^{-9}$ Гс·см⁵·г⁻¹·дин⁻¹ при H=1 кЭ). Температурная зависимость Δσ-эффекта ферромагнетика в области парапроцесса, т. е. в магнитном поле, превышающем поле технического насыщения, может быть описана термодинамическим соотношением [2]

$$\frac{1}{\sigma} \left(\frac{\partial \sigma}{\partial P} \right)_{H,T} = \frac{1}{\sigma_0} \left(\frac{\partial \sigma}{\partial P} \right)_{H,T} - \frac{T}{\Theta} \left(\frac{\partial \Theta}{\partial P} \right)_{H,T} - \frac{1}{\sigma} \left(\frac{\partial \sigma}{\partial T} \right)_{H,P}, \quad (1)$$

где σ_0 — удельная намагниченность при абсолютном нуле, Θ — температура Кюри, **о** — удельная намагниченность при температуре *T* и давлении Р. В тербии антиферромагнитная геликоидальная структура полностью разрушается в магнитных полях, превышающих критическое поле $H_{\text{KD}} \approx 500$ Э [5], поэтому при $H > H_{\text{KD}}$ тербий имеет ферромагнитное упорядочение, и при $H > H_{\kappa p}$ в области парапроцесса для тербия вполне допустимо применять формулу (1). Зависимость величины

 $(\partial\sigma/\partial P)_{H,T}$ от температуры была вычислена авторами по формуле (1) для H = 13 кЭ из измеренных значений удельной намагниченности, а также температуры Нееля Θ_N (пунктирная кривая на рис. 1), при этом для тербия были использованы экспериментальные значения $(1/\Theta_N) \times (\partial\Theta_N/\partial P) = -0.84 \cdot 10^{-9}$ К·см²/дин, $\Theta_N = 233.6$ К и $(1/\sigma_0) (\partial\sigma_0/\partial P) \cong -6 \cdot 10^{-13}$ см²/дин [2].

Из рис. 1 видно, что вблизи температуры Θ_N в магнитном поле H=13 кЭ, где процессы намагничивания обусловлены в основном парапроцессом, а антиферромагнитная геликоидальная структура полностью разрушена, формула (1) удовлетворительно описывает величину и зависимость $\Delta \sigma$ -эффекта от температуры.

Полученный результат указывает, что Δσ-эффект в области температуры перехода из парамагнитного состояния в магнитоупорядоченное действительно вызван уменьшением этой температуры под действием всестороннего давления, что и приводит к уменьшению удельной намагниченности, измеренной в области парапроцесса.

Как видно из рис. 1, величина $(\partial \sigma / \partial P)_{H,T}$ в магнитном поле H = 13 кЭ при охлаждении ниже Θ_N резко уменьшается и в области низких температур становится незначительной. В то же время она остается заметной при низких температурах в более слабых магнитных полях $H \sim 1$ кЭ. Это объясняется тем, что в магнитных полях, меньших поля технического насыщения, в $\Delta \sigma$ -эффект вносит значительный вклад изменение констант магнитной анизотропии под действием всестороннего давления. Вследствие возрастания констант магнитной анизотропии на кривых $(\partial \sigma / \partial P)(H)$ наблюдаются максимумы в области магнитных полей, где происходят наиболее интенсивно процессы вращения вектора удельной намагниченности (рис. 3). Эти максимумы выражены наиболее резко в области низких температур (см. на рис. 3 кривые $(\partial \sigma / \partial P)(H)$ при 80 и 150 K).

В результате участок кривых намагничивания, соответствующий техническому намагничиванию (процессам вращения вектора удельной намагниченности), заметным образом искажается под действием всестороннего давления. Из рис. 2 видно, что при 80 К кривая $\sigma(H)$ при $P = 8 \cdot 10^9$ дин/см² располагается значительно ниже кривой $\sigma(H)$ при атмосферном давлении.

Согласно результатам измерений констант магнитной анизотропии тербня [7], можно полагать, что участок кривой намагничивания тербия в магнитном поле, направленном вдоль оси а (см. рис. 2), в интервале полей 1—10 кЭ обусловлен вращением вектора удельной намагниченности в базисной плоскости от оси легкого намагничивания b к направлению а. Следовательно, в области низких температур в магнитных полях, меньших, чем поле технического насыщения, $\Delta \sigma$ -эффект определяется изменением констант магнитной анизотропии под действием всестороннего давления. Изменение энергии магнитной анизотропии под действием давления можно определить по изменению работы A_{hkl} , необходимой для намагничивания монокристалла в кристаллографическом направлении [*hkl*]:

$$A_{hkl} = \int_{0}^{I_{s}} H dI,$$

где *I* — намагниченность в магнитном поле *H*.

При намагничивании монокристалла тербия вдоль оси а изменение работы намагничивания A_a под действием давления пропорционально

(2)

зизменению константы магнитной анизотропии в базисной плоскости K₆:

$$\Delta A_a \sim \Delta K_{6}$$
.

Из экспериментальных данных (см. рис. 2) следует, что для тербия $\Delta A_a/A_a = \Delta K_6/K_6 = 0,1$ при $P = 8 \cdot 10^9$ дин/см² и T = 80 К, т. е. $(1/K_6) (\partial K_6/\partial P) \simeq 10^{-11}$ см²/дин.

Согласно теории [8], которая учитывает взаимодействие орбитального момента ионов РЗМ с кристаллическим полем решетки и его зависимость от межатомных расстояний, константа магнитной анизотропии K₆, характеризующая анизотропию в базисной плоскости, связана в РЗМ с постоянными кристаллической решетки с и а формулой

$$K_{6} = -\frac{\gamma}{16} Z \frac{e^{2}}{a} \frac{\langle r^{6} \rangle}{a^{6}} \left[\frac{77}{32} - \frac{1001}{1024} x_{0} \left(x_{0} - x \right) \right], \tag{4}$$

где $\langle r \rangle$ — средний радиус 4f-оболочки, e — заряд электрона, Z — эффективный заряд иона РЗМ, γ — параметр Эллиота и Стивенса, зависящий только от атомных постоянных иона РЗМ, x = c/a и $x_0 = 8/3$.

Дифференцируя логарифм величины К₆, получим

$$\frac{1}{K_{6}} \left(\frac{\partial K_{6}}{\partial P} \right) = -7 \frac{1}{a} \frac{\partial a}{\partial P} + \left(\frac{1001}{1024} \sqrt{\frac{8}{3}} \frac{\partial}{\partial P} \left(\frac{c}{a} \right) \right) \left(\frac{77}{32} - \frac{1001}{1024} \sqrt{\frac{8}{3}} \left(\sqrt{\frac{8}{3}} - \frac{c}{a} \right) \right).$$
(5)

Как видно из формулы (5), для вычисления величины $(1/K_6) \times (\partial K_6/\partial P)$ необходимо определить сжимаемость вдоль осей а и с. Данные по сжимаемости были взяты из работы [9]: $(1/a)(\partial a/\partial P) = = 8,59 \cdot 10^{-13} \text{ см}^2/\text{дин}, \partial (c/a)/\partial P = 0,6 \cdot 10^{-13} \text{ см}^2/\text{дин}, c/a = 1,581$. Подставляя эти численные данные в формулу (5), мы нашли, что теоретическое значение $(1/K_6)(\partial K_6/\partial P) = 0,61 \cdot 10^{-11} \text{ см}^2/\text{дин}$. Отсюда следует, что при давлении $P = 8 \cdot 10^9$ дин/см² возрастание K_6 должно составлять величину порядка 5%, что согласуется с экспериментальным значением $(\sim 10\%)$. Наблюдающееся расхождение можно объяснить влиянием давления на эффективную валентность редкоземельного иона (величина Z в формуле (4)).

Экспериментальные данные о зависимости удельной намагниченности от магнитного поля, температуры и всестороннего давления позволяют вычислить индуцированную магнитным полем объемную магнитострикцию. Использование других методов ее определения (например, дилатометрического, рентгеновского) вызывает значительные трудности, поэтому для РЗМ объемная магнитострикция в магнитном поле до сих пор не была определена. Согласно [6], объемная магнитострикция связана с изменением намагниченности *I* под действием всестороннего давления следующим соотношением:

$$\partial \omega / \partial H = - \partial I / \partial P, \tag{6}$$

где $\omega = (V - V_0)/V_0$ — объемная магнитострикция, V_0 — начальный «объем образца, V — объем образца в магнитном поле H.

Интегрируя по магнитному полю соотношение (6), получим

$$\omega(H) = -\int_{0}^{H} \partial I / \partial P \, dH. \tag{7}$$

71

(3)

Значения объемной магнитострикции $\omega(T)$ для монокристалла тербия были вычислены нами по формуле (7) из экспериментальных данных о зависимости намагниченности от давления, магнитного поля и температуры (см. рис. 4). Видно, что кривая $\omega(T)$ имеет максимум вблизи температуры Нееля. В магнитном поле H=13 кЭ максимальное значение ω достигает громадных значений $\sim 650 \cdot 10^{-6}$.

Рис. 4. Зависимость объемной магнитострикции от температуры в магнитном поле H||a: H=13(1), 9 (2), 5 (3), 3 (4) и 1 кЭ (5) Рис. 5. Зависимость объемной магнитострикции от квадрата удельной намагниченности вблизи точки Нееля в магнитном поле $H \parallel b: T = 232$ (1), 231 (2), 230 (3), 229 (4) и 228 K (5)

(8)

(9)

Наличие этого максимума определяется тем, что вблизи температуры магнитного упорядочения магнитное поле сильно изменяет намагниченность образца и энергию обменного взаимодействия. Поскольку обменный интеграл зависит от атомного объема, то в результате происходит изменение этого объема — возникает объемная магнитострикция.

Согласно теории фазовых переходов второго рода [10], вблизи температуры Кюри объемная магнитострикция ω связана со спонтанной объемной магнитострикцией ω_s и удельной намагниченностью σ соотношением

$$\omega = \omega_{c} + \alpha \sigma^{2}$$
,

где а — термодинамический коэффициент.

Так как в тербии величина $H_{\rm kp} \approx 500$ Э значительно меньше внешних магнитных полей ($H \gg H_{\rm kp}$), то использование формулы (8) вполне допустимо вблизи температуры Нееля. На рис. 5 представлены зависимости $\omega(\sigma^2)$ в интервале температур 228—232 К для монокристалла тербия в магнитном поле **H**||**b**. Видно, что соотношение (8) хорошо описывает зависимость объемной магнитострикции от удельной намагниченности. Экстраполируя прямолинейные участки кривых $\omega(\sigma^2)$ на ось ординат, можно найти температурную зависимость спонтанной объемной магнитострикции ω_s . Из полученных таким образом данных следует, что вблизи температуры Нееля спонтанная объемная магнитострикция тербия описывается соотношением

$$\omega_{\rm s} = \xi \, \mathcal{V} \overline{\Theta_N - T},$$

где § — некоторый числовой коэффициент.

72.

Таким образом, проведенное исследование показало, что в тербии Δσ-эффект обусловлен следующими причинами: а) изменением спонтанной удельной намагниченности под действием всестороннего давления; б) изменением удельной намагниченности в области технического намагничивания за счет действия всестороннего давления на константы магнитной анизотропии. Зависимость константы магнитной анизотропии в базисной плоскости от межатомных расстояний удовлетворительно согласуется в случае тербия с теоретическими оценками, следующими из теории магнитной анизотропии РЗМ, основанной на учете взаимодействия орбитального момента редкоземельного иона с кристаллическим полем решетки.

СПИСОК ЛИТЕРАТУРЫ

[1] Мс Whan D., Согеп zwit E., Stevens A.//Appl. Phys. 1966. 37, N 3. P. 1355. [2] В loch D.//Апп. Phys. 1966. 1. P. 93. [3] Винокурова Л. И., Кондорский Е. И.//ЖЭТФ. 1965. 48, № 2. С. 429. [4] Посядо В. П. Магнитные, магнитоупругие и электрические свойства монокристаллов сплавов ТЬ—Ү и ТЬ—Сd: Автореф. дис. ... канд. физ.-мат. наук. М.: МГУ, 1977. [5] Белов К. П., Белянчикова М. А., Левитин Р. З., Никитин С. А. Редкоземельные ферро- и антиферромагнетики. М., 1965. [6] Белов К. П. Упругие, тепловые и электрические явления в ферромагнетиках. М., 1957. [7] Никитин С. А., Арутюнян Н. П.//ЖЭТФ. 1979. 77, № 1. С. 343. [8] Казаков А. А. Деп. ВИНИТИ № 3310-77 Деп. М., 1978. [9] Fleming G. S., Liu S. H.//Phys. Rev. 1970. В2, N 1. Р. 164. [10] Белов К. П. Магнитные превращения. М., 1959.

Поступила в редакцию 02.06.87

ВЕСТН: МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1988. Т. 29, № 6

УДК 621.315.592

ДЕФЕКТООБРАЗОВАНИЕ В GaAs И GaAsP ПРИ ВОЗДЕИСТВИИ ИЗЛУЧЕНИЯ ЭКСИМЕРНОГО ЛАЗЕРА

А. И. Ефимова, П. К. Кашкаров, М. С. Джиджоев, В. К. Попов

(кафедра общей физики для химического факультета)

Исследовано влияние облучения импульсами эксимерного лазера на фотолюминесцентные свойства GaAs и GaAsP. Показано, что в зависимости от исходной дефектности лазерное воздействие приводит к генерации или аннигиляции центров безызлучательной рекомбинации.

Лазерное импульсное облучение (ЛО) в настоящее время широко используется в производстве полупроводниковых приборов на основе кремния, в частности для отжига ионоимплантированных слоев. Однако применение ЛО для обработки бинарных и более сложных полупроводников сдерживается интенсивным дефектообразованием, индуцированным самим световым импульсом [1]. Имеющиеся в литературе данные относительно дефектов в GaAs, возникающих при ЛО, ограничиваются случаем энергий импульса W, превышающих порог плавления W_{π} [1—4], когда определяющую роль играют чисто тепловые явления. Аналогичные данные для GaAsP авторами в литературе не обнаружены.

С физической точки зрения особый интерес представляют процессы, индуцированные в полупроводниках лазерными импульсами относительно малой энергии $W < W_{\pi}$. В этом случае возможно проявление атермических факторов ЛО. Ранее [5] было отмечено, что возникновение новых центров в условиях $W < W_{\pi}$ зависит от исходной дефект-