Трафики пространственной зависимости ядерной восприимчивости для одночастотной и двухчастотной градиентной модуляции даны на рис. 3. При реализации двухчастотной градиентной модуляции в методе ЧТ следует учитывать влияние вторичных полей модуляции, о которых упоминалось выше, но уже на двух частотах.

СПИСОК ЛИТЕРАТУРЫ

[1] Константинов Ю. С., Смирнов А. М.//Приб. и техн. эксперимента. 1980. № 2. С. 143. [2] Константинов Ю. С., Смирнов А. М.//Радиоспектроскотия. Межвуз. сб. науч. трудов. Пермь, 1980. С. 334. [3] Hihshaw W. S.//J. Appl. Phys. 1976. 47. Р. 3709. [4] Захаров К. Л., Константинов Ю. С., Смирнов А. М.//Радиоспектроскопия. Межвуз. сб. науч. трудов. Пермь, 1983. С. 65.

Поступила в редакцию 18.03.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1988. Т. 29, № 6

АКУСТИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

УДК 534,211.4

КЛАССИФИКАЦИЯ ОСОБЫХ ТОЧЕК ЛИНИЙ ТОКА АКТИВНОЙ И РЕАКТИВНОЙ ИНТЕНСИВНОСТИ БЛИЖНЕГО ПОЛЯ ИСТОЧНИКОВ ЗВУКА

А. Н. Иванников, Д. И. Кравченко

(кафедра акустики)

Дана классификация особых точек линий тока активной и реактивной интенсивности. Показано, что активная интенсивность имеет особые точки типа центр и седло, а реактивная — узел и седло.

Большинство промышленных шумов являются ближними звуковыми полями, создаваемыми сложными распределенными источниками. Поэтому особый интерес представляет исследование в ближнем поле распределения тех энергетических параметров звукового поля, которые связаны с направлением распространения акустической энергии, а именно векторов активной и реактивной интенсивности.

Основным методом исследования пространственного распределения активной I_a и реактивной I_j интенсивности является построение линий тока этих векторных полей [1]. Линиями тока активной (реактивной) интенсивности называются кривые [2], в каждой точке которых вектор активной (реактивной) интенсивности является касательным к этим линиям. Дифференциальные уравнения линий тока активной интенсивности имеют вид

$$\frac{dx}{I_{ax}(x, y, z)} = \frac{dy}{I_{ay}(x, y, z)} = \frac{dz}{I_{az}(x, y, z)}.$$
 (1)

В настоящей работе будем исследовать звуковые поля таких симметричных распределенных источников звука, для которых векторные поля \mathbf{I}_a и \mathbf{I}_j имеют лишь две компоненты: $(I_{ax},\ I_{ay})$ и $(I_{jx},\ I_{jy})$. В этом случае из (1) получим дифференциальное уравнение

$$\frac{dy}{dx} = \frac{I_{ay}(x, y)}{I_{ax}(x, y)}.$$
 (2)

Поскольку алгоритмы решения таких уравнений известны (например, решение графическим методом [3]), будем исследовать точки, в которых одновременно выполняются равенства $I_{ax}(x_0, y_0) = 0$ и $I_{ay}(x_0, y_0) = 0$. Такие точки векторного поля называются особыми, поскольку в них не выполняются условия теоремы существования и единственности [3] для обыкновенного дифференциального уравнения линий тока (2). Через такие точки может проходить бесконечное число линий тока либо не проходит ни одна.

Исследуем возможные распределения тока вблизи таких точек. Раскладывая компоненты \mathbf{I}_a в ряд Тейлора в окрестности особой точки и ограничиваясь членами первого порядка малости, приведем (2) к следующему виду:

$$\frac{dy}{dx} = \frac{\left(\partial I_{ay}/\partial x\right)\left(x - x_0\right) + \left(\partial I_{ay}/\partial y\right)\left(y - y_0\right)}{\left(\partial I_{ax}/\partial x\right)\left(x - x_0\right) + \left(\partial I_{ax}/\partial y\right)\left(y - y_0\right)}.$$
(3)

Характеристическим уравнением для (3) будет

$$\begin{vmatrix} \frac{\partial I_{ax}}{\partial x} - \lambda & \frac{\partial I_{ax}}{\partial y} \\ \frac{\partial I_{ay}}{\partial x} & \frac{\partial I_{ay}}{\partial y} - \lambda \end{vmatrix} = 0. \tag{4}$$

Используя известное свойство векторного поля активной интенсивности: div $I_a=0$, получим следующее выражение корней характеристического уравнения (4):

$$\lambda_{1,2} = \pm \left(\frac{\partial I_{ay}}{\partial x} \frac{\partial I_{ax}}{\partial y} - \frac{\partial I_{ax}}{\partial x} \frac{\partial I_{ay}}{\partial y} \right)^{1/2}. \tag{5}$$

Так как под знаком квадратного корня (5) находятся только действительные члены, корни характеристического уравнения будут либо действительными разных знаков

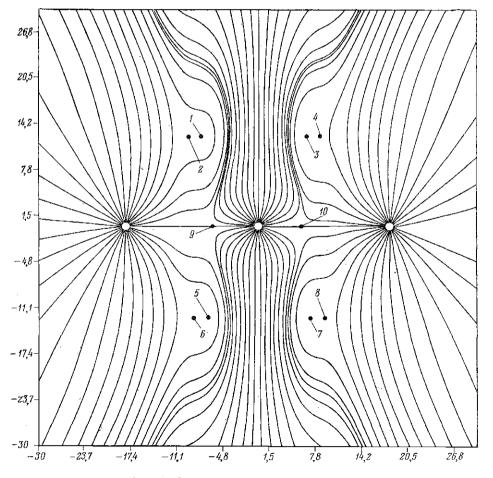


Рис. 1. Линии тока активной интенсивности

 $(\lambda_1 = -\lambda_2)$, либо мнимыми, комплексно-сопряженными $(\lambda_1 = \lambda_2^*)$. Согласно теории обыкновенных дифференциальных уравнений, линии тока в окрестности особой точки (x_0, y_0) в первом случае будут иметь гиперболический вид, а во втором они будут представлять собой замкнутые кривые. Соответственно, в первом случае имеем особую точку типа седло, а во втором — особую точку типа центр. Случай $\lambda_{1,2} = 0$ требует специального анализа членов более высокого порядка малости в разложении активной интенсивности. Таким образом, активная интенсивность имеет лишь особые точки типа центр и седло, что хорошо согласуется с ее физической интерпретацией, согласно которой активная интенсивность имеет вихревой характер и не имеет источников в области, свободной от реальных акустических излучателей.

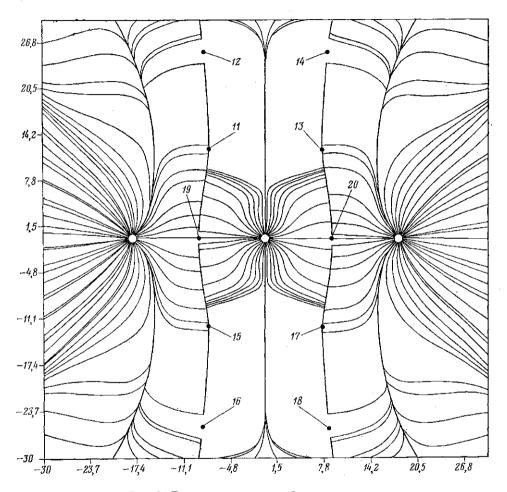


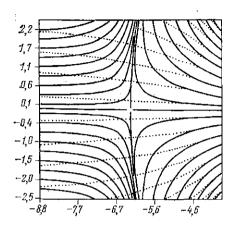
Рис. 2. Линии тока реактивной интенсивности

Рассмотрим структуру векторного поля реактивной интенсивности. Особой точкой реактивной интенсивности будем называть такую точку исследуемой области звукового поля, в которой обе компоненты I_j одновременно обращаются в нуль. Аналогично случаю активной интенсивности составим характеристическое уравнение реактивной интенсивности вида (4). Поскольку векторное поле реактивной интенсивности соленоидально, то rot $I_j = 0$. С учетом этого выражение корней характеристического уравнения имеет вид

$$\lambda_{1,2} = \frac{1}{2} \left\{ \frac{\partial I_{jx}}{\partial x} + \frac{\partial I_{jy}}{\partial y} \pm \left[\left(\frac{\partial I_{jx}}{\partial x} - \frac{\partial I_{jy}}{\partial y} \right)^2 + \left(2 \frac{\partial I_{jx}}{\partial y} \right)^2 \right]^{\frac{1}{2}} \right\}. \tag{6}$$

Поскольку в (6) входят действительные величины, а под знаком квадратного корня стоит сумма двух неотрицательных чисел, возможны лишь две ситуации: $\lambda_1\lambda_2>0$ либо $\lambda_1\lambda_2<0$. В первом случае имеем особую точку типа узел, а во втором — седло, т. е. реактивная интенсивность имеет особые точки только типа узел или седло.

Приведенные выше теоретические рассуждения иллюстрируются численным расчетом задачи о трех точечных сферических источниках с координатами (-l,0); (0,0); (l,0), расположенных вдоль общей оси на расстоянии длины волны $(l=\lambda)$ и излу-



чающих в условиях свободного звукового поля. Средний источник работает в противофазе с крайними. На рис. 1 приведена картина линий тока I_а, на которой отмечены особые точки активной интенсивности. На рис. 2 приведено то же для реактивной интенсивности. Область, заключенная в прямоугольную рамку, содержит особые точки активной интенсивности типа центр и седло, а также особую точку реактивной интенсивности типа узел. В литературе [4] эта область получила название вихря активной интенсивности.

Рис. 3. Линии тока в области седловой точки 9 активной интенсивности (сплошные линии — активная интенсивность, точечные — реактивная)

Из рис. 1, 2 видно, что в рассматриваемой области звукового поля имеют место особые точки типа центр (1, 3, 5, 7), узел (11, 13, 15, 17) и седло (2, 4, 6, 8-10, 12, 14, 16, 18-20).

При фиксированной частоте с уменьшением расстояния между источниками (например, $l \simeq 0.9 \lambda$) особая точка 1 типа центр приближается к точке 9, и во всем пространстве (кроме линии, соединяющей источники) особых точек активной интенсивности не наблюдается. При увеличении расстояния между источниками точка 1 удаляется от источников, а из точки 9, которая совмещается с точкой 19, рождается новая особая точка типа центр, совмещенная с точкой типа узел 11, которая удаляется от источников в направлении первой точки.

В силу симметрии задачи то же происходит и с аналогичными особыми точками. На рис. З представлены линии тока активной интенсивности (сплошные) и линии тока реактивной интенсивности (точечные) в области особой седловой точки 9 активной интенсивности. Приведенные рисунки дают наглядное представление о сложности энергетической структуры ближнего поля распределенных звуковых источников. Анализ энергетической структуры акустических полей будет полезен при решении многих задач акустики.

СПИСОК ЛИТЕРАТУРЫ

[1] Бурлаков В. Ю., Жуков А. Н., Иванников А. Н., Тонаканов О. С.//Вестн. Моск. ун-та. Физ. Астрон. 1985. 26, № 5. С. 72. [2] Waterhouse R. V.//Proc. 2nd Intern. Congr. on Acoustic Intensity. CETIM. Senlis France), 1985. Р. 129. [3] Тихонов А. Н., Васильева А. Б., Свешников А. Г. Дифференциальные уравнения. М., 1985. С. 144. [4] Тісһу J.//Proc. 2nd Intern. Congr. on Acoustic Intensity. CETIM. Senlis (France), 1985. Р. 113.

Поступила в редакцию 03.03.88