УДК 548.0:535.51

ПОЛЯРИЗАЦИОННАЯ СПЕКТРОСКОПИЯ НЕЛИНЕЙНОГО ПОВОРОТА И Деформации эллипса поляризации света, прошедшего через нелинейные гиротропные кристаллы

А. А. Голубков, В. А. Макаров

(кафедра общей физики и волновых процессов)

Предложена новая схема поляризационной спектроскопии, позволяющая — независимо от симметрии кристалла — разделять вклады различных механизмов нелинейно-оптического поворота и деформации эллипса поляризации света в кристаллах высшей и средней категорий.

В последнее время активно развивается новый тип спектроскопин — спектроскопия нелинейной оптической активности (HOA) [1-4], основанная на фурье-анализе зависимости пропорционального интенсивности угла поворота эллипса поляризации выходного излучения от начальной ориентации падающей линейно поляризованной волны. Однако с ее помощью невозможно разделение механизмов HOA в кристаллах классов 4mm, 3m, 6mm, 4, 3, 6, ∞ , ∞m . Исследование влияния эллиптичности падающего света на эффекты поляризационного самовоздействия ограничивается в настоящее время рассмотрением изотропной среды [5].

В настоящей работе феноменологически рассмотрены эффекты поляризационного самовоздействия произвольно поляризованной волны, распространяющейся вдоль оптической оси кристаллов высшей и средней категорий. Выделено четыре механизма нелинейно-оптического поворота (НОП) и деформации (НОД) эллипса поляризации. Уточнен характер влияния линейной гиротропии. Предложена новая схема поляризационной спектроскопии, позволяющая разделять вклады различных механизмов НОП и НОД независимо от симметрии кристаллов и дающая — при использовании эллиптически поляризованного света — в два раза больше информации о кубической нелинейности и ее пространственной дисперсии (ПД) ПО сравнению c [1, 2].

В дальнейшем нам понадобятся две физически выделенные системы координат: лабораторная xyz (ось 0z направлена по волновому вектору k) и кристаллофизическая $x_1x_2x_3$ [6]. Их взаимная ориентация определяется параметром $\varkappa = (\mathbf{e}_z \cdot \mathbf{e}_{x_1}) (\mathbf{e}_z + \mathbf{e}_{x_3} - \mathbf{c}_z)$ соответственно единичные орты осей 0z и 0 x_3 , ($\mathbf{e}_x \cdot \mathbf{e}_{x_1}$) = 1), который может принимать значения ± 1 .

Переходя в волновом уравнении к циркулярно поляризованным амплитудам $E_{\pm} = E_x \pm i E_y$, в первом приближении по параметрам μ и μ_1 , характеризующим нелинейность среды ($\mu^{\simeq} |\mathbf{P}^{(N)}|/|\mathbf{E}|$, $\mathbf{P}^{(N)}$ — нелинейная поляризация) и ПД ($\mu_1 \simeq d/\lambda$, d — характерный размер «области влияния», $\lambda = 2\pi/k$ — длина волны), получим

$$\frac{d^{2}E_{\pm}}{dz^{2}} + k^{2}E_{\pm} \mp 2i\rho_{0}\frac{dE_{\pm}}{dz} + \frac{4\pi\omega^{2}}{c^{2}}\left(\widetilde{P}_{x}^{(N)} \pm i\widetilde{P}_{y}^{(N)}\right) = 0,$$

$$\widetilde{P}_{i}^{(N)} = \chi_{ijkn}E_{j}^{*}E_{k}E_{n} + \left(\gamma_{ijknm}^{(1)} + \gamma_{ijknm}^{(2)}\right)E_{j}^{*}E_{k}\nabla_{m}E_{n} + \gamma_{ijknm}^{(3)}E_{k}E_{n}\nabla_{m}E_{j}^{*}.$$
 (1)

Здесь $\rho_0 = 2\pi \omega^2 \gamma_0/c^2$, $k = \omega \sqrt{\epsilon}/c$, ϵ — диэлектрическая проницаемость,

 γ_0 — константа линейной гирации, а в разложении нелинейной поляризации опущены квадратичные по полю слагаемые, ответственные за частотные преобразования. Первое слагаемое в $\tilde{P}_i^{(N)}$ (кубическая нелинейность) имеет порядок μ , а остальные (ПД кубической нелинейности) — $\mu\mu_1$. В нулевом приближении по μ ($\tilde{P}_i^{(N)} = 0$) и в первом по μ_1 ($\rho_0^2 \ll k^2$), решение (1) хорошо известно:

$$E_{\pm} = \widetilde{A}_{\pm} \exp\left(-ikz\right), \quad \widetilde{A}_{\pm} = \widetilde{A}_x \pm i\widetilde{A}_y = A_{\pm 0} \exp\left(\pm i\rho_0 z\right).$$

В соответствии с методом медленно меняющихся амплитуд [7] в общем случае $(\tilde{P}_i^{(N)} \neq 0)$ будем искать решение (1) в том же виде, но считая $A_{\pm 0} = A_{\pm 0}(\mu z)$. В результате, опуская члены порядка μ_1^2 , $\mu_1^2 \mu$ и выше, из (1) получим:

$$E_{\pm}(z) = A_{\pm}(z) \exp\left(-i\operatorname{Re}\left\{k\right\} \cdot z\right), \quad r \neq e$$

$$\frac{dA_{\pm}}{dz} + \delta A_{\pm} \mp i\rho_{0}A_{\pm} = -\frac{2\pi i\omega^{2}}{kc^{2}}\left(P_{x}^{(N)} \pm iP_{y}^{(N)}\right),$$

$$P_{i}^{(N)} = \left\{\chi_{ijnm}\left(-\omega, \omega, \omega\right) - ik\gamma_{ijnmz}\left(-\omega, \omega, \omega\right)\right\}A_{i}^{*}A_{n}A_{m},$$
(2)

где

i, *j*, *n*,
$$m = x$$
, *y*; $\gamma_{ijnmp} = \gamma_{ijnmp}^{(1)} + \gamma_{ijmnp}^{(2)} - \gamma_{ijnmp}^{(3)}$, $\delta = -\operatorname{Im}(k)$,

причем оба тензора в (2), характеризующие кубическую нелинейность и ее ПД, симметричны относительно перестановки третьего и четвертого индексов.

Видно, что в случае распространения излучения в изотропной гиротропной среде (2) совпадает с формулой, полученной в [8]. Однако система (2) отличается от использованной в [1, 2], где в знаменателе вместо k стоит $k_{\pm} = k \mp \rho_0$. Это отличие приводит там к ошибочному появлению третьего слагаемого в выражении для угла НОП плоскости поляризации, а следовательно, и сопоставленного ему механизма НОА-3, который на самом деле отсутствует. Однако это не означает, что линейная гиротропия не оказывает на НОП и НОД никакого влияния. Физические причины последнего будут обсуждены ниже. Ошибка, допущенная в [1, 2], не была нами своевременно замечена при обобщении используемых там уравнений на случай взаимодействия встречных волн [9]. Для ее устранения достаточно положить C_{n5} в [9] равными нулю.

Решая (2) в приближении

$$2\pi\omega^2 \Big| \int_0^L \left[(P_x^{(N)}(z) \pm i P_y^{(N)}(z)) / A_{\pm}(z) \right] dz \Big| \ll kc^2,$$

ограничивающем сверху длину кристалла $L : |\chi k L| \mathbf{A} |^2 | < |\varepsilon|$, и пренебрегая линейным круговым дихроизмом ($\lim \rho_0 = 0$), получим следующие выражения для угла поворота $\varphi(z) = 0.5 \operatorname{Arg}(E_+E_-^*)$ эллипса поляризации распространяющегося излучения и его эллиптичности $B(z) = (|A_+|^2 - |A_-|^2)/(|A_+|^2 + |A_-|^2)$:

$$\varphi(z) = \varphi_0 + \varphi_0 z + \Delta \varphi, \ B(z) = B_0 + 2\Delta B(1 - B_0^2).$$

Здесь $B_0 = B(0)$, $\varphi_0 = \varphi(0)$ — соответственно значения эллиптичности и угла поворота эллипса поляризации преломленной волны,

$$\Delta \Phi = (\Phi_{1(1)} + \Phi_{1(2)}) + (\Phi_{2(1)} + \Phi_{2(2)}) + (\Phi_{3(1)} + \Phi_{3(2)}) + (\Phi_{4(1)} + \Phi_{4(2)}),$$

$$\Delta B = (B_{1(1)} + B_{1(2)}) + (B_{2(1)} + B_{2(2)}) + (B_{3(1)} + B_{3(2)}) + (B_{4(1)} + B_{4(2)}).$$
(3)

В (3) использованы следующие обозначения:

$$\begin{split} \varphi_{1(m)} &= \operatorname{Re} \left\{ \Omega_{1}^{(m)} \left(k \rho \right) \right\}; \quad B_{1(m)} = -\operatorname{Im} \left\{ \Omega_{1}^{(m)} \left(k \rho \right) \right\}; \quad \varphi_{2(m)} = -\operatorname{Im} \left\{ \Omega_{1}^{(m)} \left(\sigma \right) \right\}; \\ B_{2(m)} &= -\operatorname{Re} \left\{ \Omega_{1}^{(m)} \left(\sigma \right) \right\}; \quad \varphi_{3(m)} = -\operatorname{Re} \left\{ \Omega_{2}^{(m)} \left(\sigma \right) \right\}; \quad B_{3(m)} = \operatorname{Im} \left\{ \Omega_{2}^{(m)} \left(\sigma \right) \right\}; \\ \varphi_{4(m)} &= -\operatorname{Im} \left\{ \Omega_{2}^{(m)} \left(k \rho \right) \right\}; \quad B_{4(m)} = -\operatorname{Re} \left\{ \Omega_{2}^{(m)} \left(k \rho \right) \right\}, \end{split}$$

где

$$\boldsymbol{\rho} = \{\rho_1, \rho_2, \ldots, \rho_8\}; \quad \boldsymbol{\sigma} = \{\sigma_1, \sigma_2, \ldots, \sigma_8\}.$$

Явный вид отличных от нуля $\rho_{\alpha}(\hat{\gamma})$ и $\sigma_{\alpha}(\hat{\chi})$ для всех классов высшей и средней категорий приведен в табл. 1. При ее заполнении конкретный вид $\hat{\chi}$ брался из [6], а $\hat{\gamma}$ выводился методом циклических координат либо методом прямой проверки [6]. Выражения для $\Omega_1^{(m)}$ и $\Omega_2^{(m)}$ имеют вид

$$\Omega_{1}^{(m)}(\boldsymbol{\beta}) = V \left[\beta_{1}C_{0}^{(m)} - \{(\beta_{2} + (\beta_{8} - \beta_{2})B_{0}^{2})C_{2}^{(m)} + (\beta_{7} - \beta_{3}(1 - B_{0}^{2}))S_{2}^{(m)}\} \times (1 - B_{0}^{2})^{-1/2} + (\beta_{5}C_{4}^{(m)} + \beta_{4}S_{4}^{(m)})/2],$$

$$\Omega_{2}^{(m)}(\boldsymbol{\beta}) = VB_{0} \left[-\beta_{6}C_{0}^{(m)} + (\beta_{7}C_{2}^{(m)} - \beta_{8}S_{2}^{(m)})(1 - B_{0}^{2})^{-1/2} + (\beta_{5}S_{4}^{(m)} - \beta_{4}C_{4}^{(m)})/2],$$
(4)

где под β подразумевается $k\rho$ либо σ . В (4) $V = \pi \omega^2 \cdot W_0 / 2kc^2$, $C_N^{(1)} = S_N \cos N\phi_0$; $C_N^{(2)} = C_N \sin N\phi_0$; $S_N^{(1)} = S_N \sin N\phi_0$; $S_N^{(2)} = -C_N \cos N\phi_0$; $S_N = (N\rho_0 S_N^{(0)} - 2\delta C_N^{(0)})/H_N$; $C_N = (N\rho_0 C_N^{(0)} + 2\delta S_N^{(0)})/H_N$; $H_N = (N\rho_0)^2 + 4\delta^2$; $S_N^{(0)} = \exp(-2\delta z) \cdot \sin N\rho_0 z$; $C_N^{(0)} = \exp(-2\delta z) \cdot \cos(N\rho_0 z) - 1$; N = 2, 4; $W_0 = = \{|A_+(0)|^2 + |A_-(0)|^2\}/2$ —интенсивность преломленной волны.

Первая и вторая пары слагаемых в (3) обобщают на случай эллиптически поляризованного излучения известные механизмы HOA-1 [1, 2, 8] и HOA-2 [1, 2] и связанные с ними механизмы деформации эллипса поляризации, третья описывает хорошо изученный в случае изотропных сред эффект вращения и деформации эллипса поляризации [5]. Последняя группа слагаемых в (3) связана с механизмом НОП и НОД, являющимся аналогом терхьюновского вращения и деформации применительно к ПД кубической нелинейности. Его проявление ранее не рассматривалось. Данный механизм дает вклад в НОП и НОД лишь при распространении эллиптически поляризованного излучения через среды, обладающие анизотропией и ПД кубической нелинейности.

Как следует из (3), (4) и табл. 1, естественная оптическая активность влияет на НОП и НОД только в анизотропных средах. Этот результат полностью соответствует [8], однако значительно отличается от предсказаний [1, 2], согласно которым, например, такое влияние имеет место в кристаллах классов 32 и 622, аналогичных (с точки зрения рассматриваемой задачи) изотропным гиротропным средам. Заметим также, что в (3), (4) впервые проведен последовательный учет влияния на НОП и НОД линейного поглощения.

Для получения на основе исследования НОП и НОД спектроскопической информации о веществе необходимо, используя экспериментальные зависимости $\Delta \varphi$ и ΔB от параметров падающего излучения, найти коэффициенты σ_{α} и ρ_{α} . Учитывая характер связи ΔB и $\Delta \varphi$ с начальной ориентацией эллипса поляризации, с этой целью естественно

J ... t

Коэффициенты σ_{α} и ρ_{α} ($\alpha = 1, 2, ..., 8$), определяющие НОП и НОД эллипса поляризации в кристаллах высшей и средней категорий (использованы следующие обозначения: xx - 1, xy - 2, yx - 3, yy - 4, xxz - 5, xyz - 6, yxz - 7, yyz - 8)

Классы	σ _α	ρ _α				
4	$ \begin{array}{l} \sigma_1 = \chi_{21} + 2\chi_{12} + 3\chi_{24}, \\ \sigma_4 = 2 \left(\chi_{11} - \chi_{14} - 2\chi_{22}\right), \\ \sigma_5 = 2 \left(\chi_{24} - \chi_{21} - 2\chi_{12}\right), \\ \sigma_6 = \chi_{11} - 2\chi_{22} + 3\chi_{14} \end{array} $	$\begin{array}{l} \rho_1 = \gamma_{25} + 2\gamma_{16} + 3\gamma_{28}, \\ \rho_4 = 2 \left(\gamma_{15} - \gamma_{18} - 2\gamma_{28}\right), \\ \rho_5 = 2 \left(\gamma_{28} - 2\gamma_{18} - \gamma_{25}\right), \\ \rho_6 = \gamma_{15} - 2\gamma_{26} + 3\gamma_{18} \end{array}$				
422, 432	σ _{4,6} как в 4	ρ _{1,5} как в 4				
3, 6, ∞	$\sigma_1 = 4\chi_{24}, \ \sigma_6 = 4\chi_{14}$	$\rho_1 = 4\gamma_{28}, \ \rho_6 = 4\gamma_{18}$				
32, 622, ∞2, ∞∞	σ _е как в З	ρ ₁ как в З				
23	$ \begin{array}{l} \sigma_3 = 2\chi_{14} - 2\chi_{41}, \\ \sigma_4 = 2\chi_{11} - \chi_{14} - \chi_{41} - 2\chi_{22} - 2\chi_{32}, \\ \sigma_6 = \chi_{11} - \chi_{22} - \chi_{32} + 3(\chi_{14} + \chi_{41})/2, \\ \sigma_7 = \chi_{14} - \chi_{41} + 2\chi_{32} - 2\chi_{22} \end{array} $	$\begin{array}{l} \rho_1 = (\gamma_{25} - \gamma_{38} + 2(\gamma_{16} - \gamma_{46}) + 3(\gamma_{28} - \gamma_{35}))/2, \ \rho_2 = 2 \ (\gamma_{35} + \gamma_{28}), \\ \rho_5 = -\gamma_{25} - \gamma_{35} + \gamma_{28} + \gamma_{38} + 2\gamma_{46} - 2\gamma_{16}, \\ \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{46} \end{array}$				
<u>4</u>	ОТЛАНИЕ КАК В 4	$ \begin{array}{ } \rho_2 = 4\gamma_{28}, \ \rho_3 = 4\gamma_{18}, \ \rho_7 = 2\gamma_{18} - 2\gamma_{15} - \\ -4\gamma_{26}, \ \rho_8 = 2(\gamma_{28} - \gamma_{25} + 2\gamma_{16}) \end{array} $				
4/m						
$\overline{3}, \overline{6}, 6/m, \infty/m$	σ _{1,6} как в З	0				
$\overline{3m}, \overline{6m2}, 6/mmm$ $\infty/mm, \infty\infty m$	σ _в как в З					
$3m, 6mm, \infty m$		ре как в З				
$\overline{4}2m$, $\overline{4}3m$		ρ ₂₊₈ как в 4				
4 <i>mm</i>	σ _{4,6} как в 4	Р _{4,6} как в 4				
4/mmm, m3m						
m3	σ _{3,4,6,7} как в 23					

воспользоваться методом углового фурье-анализа [3]. Однако часто этого оказывается недостаточно, так как вклады в одни и те же угловые гармоники могут давать одновременно и кубическая нелинейность и ее ПД. Поэтому необходимо предварительно разделять вклады различных механизмов НОП и НОД в поляризационное самовоздействие света.

\mathring{T} аблица $\mathring{2}$ различных методим с точки зрения получения спектроскопической информации о веществе $(\widetilde{o}_{lpha}=\sigma_{lpha}/({ m Re}\{k\}-i\delta))$	Изучение НОП и НОД	$B_0 \neq 0$	G1,4,5,6; P1,4,5,6	04,6; P1.5	J1.6; P1.8	σ ₆ ; ρ ₁	O3.4.6.7, P1.2.5.8	01.4.5.6; P2.3.7.8	Ø1,4,5,6	σ _{1,6}	đ	σ ₆ ; ρ ₆	04,6; 02,8	04,8; P4,8	04.6	G8.4.6.7
		$B_{0} = 0$	G1,4,5; P1,4,5	$\sigma_4; \rho_{1,5}$	σ1; ρ1	ρı	$\sigma_3 - \sigma_7; \sigma_4; \rho_{1,2,5}$	σ _{1,4,5} ; ρ ₂ ; ρ ₃ ρ ₇	0 ₁₁₄₁₅	σ_1	1	1	$\sigma_{4}; \rho_2$	G4; P4	σ_4	$\sigma_{3} = \sigma_{7}; \ \sigma_{4}$
	Изучение только НОП	$B_0 \neq 0$	Im $\{\widetilde{\sigma}_1, \rho_6\}$; Re $\{\widetilde{\sigma}_6, \rho_1\}$; $\sigma_{4,6}$; $\rho_{4,6}$	Re $\{\widetilde{\sigma}_6, p_1\}; \sigma_4; p_5$	Im $\{ \widetilde{\sigma}_1, \rho_0 \}$; Re $\{ \widetilde{\sigma}_6, \rho_1 \}$	Re $\{\widetilde{\sigma}_{6}, \rho_{1}\}$	$\left \operatorname{Im} \left\{ \widetilde{\sigma_{5}} \right\}; \operatorname{Re} \left\{ \widetilde{\sigma_{6}}, \ \rho_{1,2} \right\}; \ \sigma_{4,7}; \ \rho_{5,8} \right $	Im $\{\widetilde{\sigma_1}\}$; Re $\{\widetilde{\sigma_6}, \rho_{2,3}\}$; $\sigma_{4,5}; \rho_{7,8}$	Im $\{\widetilde{\sigma}_{4}\}$; Re $\{\widetilde{\sigma}_{6}\}$; $\sigma_{4.5}$	Im $\{\widetilde{\sigma}_1\}$; Re $\{\widetilde{\sigma}_6\}$	Re $\{\widetilde{\sigma}_{\mathfrak{g}}\}$	Re $\{\widetilde{\sigma}_{\theta}\}$; Im $\{\rho_{\theta}\}$	Re (0, p2); 04; p8	Re $\{\widetilde{\sigma_6}\}$; Im $\{\rho_8\}$; σ_4 ; ρ_4	Re $\{\widetilde{\sigma}_6\}; \sigma_4$	Im $\{\widetilde{\sigma}_3\}$; Re $\{\widetilde{\sigma}_6\}$; $\sigma_{4,7}$
		$B_0 = 0$	$\operatorname{Im}\left\{\widetilde{\sigma_{1,4,6}}\right\}; \operatorname{Re}\left\{\rho_{1,4,\delta}\right\}$	Im $\{\widetilde{\sigma_4}\}$; Re $\{\rho_{1,5}\}$	Im $\{\widetilde{\sigma}_1\}$; Re $\{\rho_1\}$	Re {p1}	Im $\{\widetilde{\sigma_3} - \widetilde{\sigma_7}, \ \widetilde{\sigma_4}\};$ Re $\{\rho_{1,2,5}\}$	Im $\{\widetilde{\sigma}_{1,4,5}\}$; Re $\{\rho_2, \rho_3 - \rho_7\}$	Im $\{\widetilde{\sigma}_{1,4,5}\}$	$\operatorname{Im} \{\widetilde{\sigma_1}\}$	1	1	Im $\{\widetilde{\sigma_4}\}$; Re $\{\rho_2\}$	Im $\{\widetilde{\sigma}_a\}$; Re $\{\rho_a\}$	$\lim {\widetilde{o_4}}$	$\operatorname{Im}(\widetilde{\sigma_{3}}-\widetilde{\sigma_{\gamma}}, \widetilde{\sigma_{4}})$
Возможности		Классы	4	422, 432	3, 6, ∞	$32, 622, \infty 2, \infty \infty$	23	4	4/m	$\overline{3}, \ \overline{6}, \ 6/m, \ \infty/m$	$\overline{3}m, \overline{6}m2, \infty\infty m, 6/mm, \infty/mm$	$3m, \epsilon mm, \infty m$	$\overline{4}2m, \overline{4}3m$	4mm	4 <i>]mmm</i> , <i>m</i> 3 <i>m</i>	m3

.

58

•

.

Последнее можно сделать, измеряя нелинейную деформацию $\Delta B^{(\times)}(\varphi_0, B_0)$ и нелинейный поворот $\Delta \varphi^{(\times)}(\varphi_0, B_0)$ эллипса поляризации при двух различных ориентациях кристалла относительно лабораторной системы координат, соответствующих $\varkappa = \pm 1$. Дело в том, что при повороте кристалла на 180° относительно оси 0Х (изменение знака \varkappa) коэффициенты σ_{α} и ρ_{α} меняются различным образом:

$$\sigma_{1,2,5,8}^{(-1)} = -\sigma_{1,2,5,8}^{(1)}; \ \sigma_{3,4,6,7}^{(-1)} = \sigma_{3,4,6,7}^{(1)}; \ \rho_{1,2,5,8}^{(-1)} = \rho_{1,2,5,8}^{(1)}; \ \rho_{3,4,6,7}^{(-1)} = -\rho_{3,4,6,7}^{(1)},$$
(5)

где $\rho^{(\pm 1)}(\sigma^{(\pm 1)})$ равно $\rho(\sigma)$, вычисленному соответственно при $\varkappa = \pm 1$. Заметим также, что $\rho_0^{(-1)} = \rho_0^{(1)}$. Существование зависимости коэффициентов σ_{α} и ρ_{α} от \varkappa связано с тем, что при заполнении табл. 1 компоненты тензоров $\hat{\chi}$ и $\hat{\gamma}$ брались в лабораторной системе координат, в то время как собственной для них является кристаллофизическая (при $\varkappa = 1$ они совпадают).

Используя (4), (5), нетрудно показать, что

$$\begin{aligned}
&\varphi_{1(1)}^{(1)}(\phi_0, \ B_0) + \varphi_{2(2)}^{(1)}(\phi_0, \ B_0) = (\phi_1 + \phi_2 + \phi_3 + \phi_4)/4, \\
&\varphi_{2(1)}^{(1)}(\phi_0, \ B_0) + \varphi_{1(2)}^{(1)}(\phi_0, \ B_0) = (\phi_1 + \phi_2 - \phi_3 - \phi_4)/4, \\
&\varphi_{3(1)}^{(1)}(\phi_0, \ B_0) + \varphi_{4(2)}^{(1)}(\phi_0, \ B_0) = (\phi_1 - \phi_2 - \phi_3 + \phi_4)/4,
\end{aligned}$$
(6)

 $\varphi_{4(1)}^{(1)}(\varphi_0, B_0) + \varphi_{3(2)}^{(1)}(\varphi_0, B_0) = (\varphi_1 - \varphi_2 + \varphi_3 - \varphi_4)/4,$

где $\varphi_{1,2} = \Delta \varphi^{(1)}(\varphi_0, \pm B_0), \varphi_{3,4} = \Delta \varphi^{(-1)}(-\varphi_0, \mp B_0)$ — углы НОП главной оси эллипса поляризации, полученные в результате четырех различных измерений. Абсолютно аналогичные соотношения можно выписать и для $B_{l(m)}^{(1)}(\varphi_0, B_0)$ (l = 1, 2, 3, 4; m = 1, 2).

Как следует из (3), (4) и (6), определить коэффициенты ρ_{α} и σ_{α} , а следовательно, получить информацию о компонентах тензора $\hat{\gamma}$ и $\hat{\chi}$ можно, перейдя в (6) к угловым фурье-компонентам [3] при нескольких значениях B_0 . Коэффициенты, которые при этом могут быть найдены, приведены в табл. 2, где также проведено сравнение возможностей различных методик. Видно, что количество спектроскопической информации о веществе, получаемой при изучении эллиптически поляризованного света, примерно в два раза больше, чем в случае использования линейно поляризованной волны [1, 2]. Сопоставление результатов данной работы и [9] позволяет сделать вывод, что использование двух волн эллиптической поляризации является еще более эффективным.

Авторы благодарны С. А. Ахманову и К. Н. Драбовичу за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

[1] Желудев Н. И., Петренко А. Д.//Кристаллография. 1984. 29, № 6. С. 1045. [2] Желудев Н. И., Петренко А. Д., Свирко Ю. П., Филиппова Г. С.//Изв. АН СССР, сер. физ. 1984. 48, № 3. С. 603. [3] Жданов Б. В., Желудев Н. И., Ковригин А. И., Яковлев Д. В.//Квант. электроника. 1981. 8, № 1. С. 98. [4] Ахманов С. А., Жданов Б. В., Желудев Н. И. и др.//Письма в ЖЭТФ. 1979. 29, № 5. С. 294. [5] Макег Р. D., Тегћипе R. W., Savage C. М.//Phys. Lett. 1964. 12, N 18. Р. 507. [6] Сиротин Ю. И., Шаскольская М. П. Основы кристаллофизики. М., 1975. [7] Ахманов С. А., Хохлов Р. В. Проблемы нелинейной оптики. М., 1964. [8] Акһтапоv S. А., Lyakhov G. A., Makarov V. A., Zharikov V. I.//Opt. Acta. 1982. **29**, N 10. Р. 1359. [9] Голубков А. А., Макаров В. А.//Опт. и спектр. 1986. **60**, № 4. С. 869.

> Поступила в редакцию» 16.11.87

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 2

УДК 535.36.01

ПОЛЯРИЗАЦИОННЫЕ СВОЙСТВА КОГЕРЕНТНОГО АНТИСТОКСОВА Рассеяния в классической модели столкновительной плазмы

С. М. Гладков

(кафедра общей физики и волновых процессов)

На простой классической модели газовой среды получены поляризационные свойства когерентного антистоксова рассеяния света, выведенные ранее с помощью громоздкого квантового расчета. Результаты классического и квантового расчетов полностью совпадают.

В настоящее время наметилась тенденция использования простых классических моделей для описания эффектов, традиционно считавшихся квантовыми. Показано, например, что в классических нелинейных системах могут наблюдаться эффекты, аналогичные световому эху [1] и стимулированному излучению [2]. Развитие простых классических моделей представляется весьма полезным в тех случаях, где строгий квантовый подход требует громоздких и сложных вычислений.

В настоящей работе приводятся результаты попытки получить поляризационные свойства когерентного антистоксова рассеяния (КАРС), выведенные ранее с помощью аппарата неприводимых тензорных операторов (квантовый расчет) [3], на простой классической модели столкновительной плазмы [4]. Интерес к такой постановке задачи вызван необходимостью объяснения поляризационных свойств нерезонансного КАРС в лазерной плазме в условиях, далеких от резонанса волн накачки с плазменными колебаниями [5]. При плотности электронов в плазме $\sim 10^{19}$ см⁻¹ дискретные уровни атомов и ионов частично растворяются; строгий расчет кубической оптической воспринмчивости при этом слишком сложен. В этом случае оправданно применение классической столкновительной модели плазмы [4, 6].

В этой модели вводятся скорость **v** и температура T_e свободных электронов среды. Температура среды T_0 и T_e могут не совпадать:

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{e}{m_e} \mathbf{E} - v\mathbf{v}; \tag{1}$$
$$\frac{\partial T_e}{\partial t} = -\frac{2}{3} e\mathbf{v}\mathbf{E} - \delta \mathbf{v} (T_e - T_0); \tag{2}$$

здесь $\delta = m_e/m_i$ — отношение массы электронов к массе ионов; Е напряженность внешнего электромагнитного поля; v — в случае полностью ионизованной плазмы частота электрон-ионных столкновений; согласно [4] $v = v_0 (T_0/T_e)^{3/2}$. В этой зависимости $v(T_e)$ содержится причина оптической нелинейности такой модели.