УДК 548.0:535.51

ПОЛЯРИЗАЦИОННАЯ СПЕКТРОСКОПИЯ НЕЛИНЕЙНОГО ПОВОРОТА И ДЕФОРМАЦИИ ЭЛЛИПСА ПОЛЯРИЗАЦИИ СВЕТА, ПРОШЕДШЕГО ЧЕРЕЗ НЕЛИНЕЙНЫЕ ГИРОТРОПНЫЕ КРИСТАЛЛЫ

А. А. Голубков, В. А. Макаров

(кафедра общей физики и волновых процессов)

Предложена новая схема поляризационной спектроскопии, позволяющая — независимо от симметрии кристалла — разделять вклады различных механизмов нелинейно-оптического поворота и деформации эллипса поляризации света в кристаллах высшей и средней категорий.

В последнее время активно развивается новый тип спектроскопии — спектроскопии — спектроскопия нелинейной оптической активности (НОА) [1—4], основанная на фурье-анализе зависимости пропорционального интенсивности угла поворота эллипса поляризации выходного излучения от начальной ориентации падающей линейно поляризованной волны. Однако с ее помощью невозможно разделение механизмов НОА в кристаллах классов 4mm, 3m, 6mm, 4, 3, 6, ∞ , ∞m . Исследование влияния эллиптичности падающего света на эффекты поляризационного самовоздействия ограничивается в настоящее время рассмотрением изотропной среды [5].

В настоящей работе феноменологически рассмотрены эффекты поляризационного самовоздействия произвольно поляризованной волны, распространяющейся вдоль оптической оси кристаллов высшей и средней категорий. Выделено четыре механизма нелинейно-оптического поворота (НОП) и деформации (НОД) эллипса поляризации. Уточнен характер влияния линейной гиротропии. Предложена новая схема поляризационной спектроскопии, позволяющая разделять вклады различных механизмов НОП и НОД независимо от симметрии кристаллов и дающая — при использовании эллиптически поляризованного света — в два раза больше информации о кубической нелинейности и ее пространственной дисперсии (ПД) по сравнению с [1, 2].

В дальнейшем нам понадобятся две физически выделенные системы координат: лабораторная xyz (ось 0z направлена по волновому вектору \mathbf{k}) и кристаллофизическая $x_1x_2x_3$ [6]. Их взаимная ориентация определяется параметром $\mathbf{x} = (\mathbf{e}_z \cdot \mathbf{e}_{x_3}) (\mathbf{e}_z \cdot \mathbf{e}_{x_3} - \text{соответственно единичные орты осей <math>0z$ и $0x_3$, $(\mathbf{e}_x \cdot \mathbf{e}_{x_1}) = 1$), который может принимать значения ± 1 .

Переходя в волновом уравнении к циркулярно поляризованным амплитудам $E_{\pm}=E_x\pm iE_y$, в первом приближении по параметрам μ и μ_1 , характеризующим нелинейность среды $(\mu^{\sim}|\mathbf{P}^{(N)}|/|\mathbf{E}|,\mathbf{P}^{(N)})$ нелинейная поляризация) и ПД $(\mu_1^{\sim}d/\lambda,d-$ характерный размер «области влияния», $\lambda=2\pi/k-$ длина волны), получим

$$\frac{d^{2}E_{\pm}}{dz^{2}} + k^{2}E_{\pm} \mp 2i\rho_{0} \frac{dE_{\pm}}{dz} + \frac{4\pi\omega^{2}}{c^{2}} (\widetilde{P}_{x}^{(N)} \pm i\widetilde{P}_{y}^{(N)}) = 0,$$

$$\widetilde{P}_{i}^{(N)} = \chi_{ijkn}E_{i}^{*}E_{k}E_{n} + (\gamma_{ijknm}^{(1)} + \gamma_{ijknm}^{(2)}) E_{i}^{*}E_{k}\nabla_{m}E_{n} + \gamma_{ijknm}^{(3)}E_{k}E_{n}\nabla_{m}E_{i}^{*}.$$
(1)

Здесь $p_0=2\pi\omega^2\gamma_0/c^2$, $k=\omega\sqrt{\epsilon}/c$, ϵ — диэлектрическая проницаемость,

 γ_0 — константа линейной гирации, а в разложении нелинейной поляризации опущены квадратичные по полю слагаемые, ответственные за частотные преобразования. Первое слагаемое в $\widetilde{P}_i^{(N)}$ (кубическая нелинейность) имеет порядок μ , а остальные (ПД кубической нелинейности) — $\mu\mu_1$. В нулевом приближении по μ ($\widetilde{P}_i^{(N)}=0$) и в первом по μ_1 ($\rho_0^2\ll k^2$), решение (1) хорошо известно:

$$E_{\pm} = \widetilde{A}_{\pm} \exp{(-ikz)}, \quad \widetilde{A}_{\pm} = \widetilde{A}_{x} \pm i\widetilde{A}_{y} = A_{\pm 0} \exp{(\pm i\rho_{0}z)}.$$

В соответствии с методом медленно меняющихся амплитуд [7] в общем случае $(\widetilde{P}_i^{(N)} \neq 0)$ будем искать решение (1) в том же виде, но считая $A_{\pm 0} = A_{\pm 0}$ (μ z). В результате, опуская члены порядка μ_1^2 , $\mu_1^2 \mu$ и выше, из (1) получим:

$$\begin{split} E_{\pm}(z) &= A_{\pm}(z) \exp\left(-i \operatorname{Re}\{k\} \cdot z\right), \text{ где} \\ \frac{dA_{\pm}}{dz} &+ \delta A_{\pm} \mp i \rho_{0} A_{\pm} = -\frac{2\pi i \omega^{2}}{kc^{2}} \left(P_{x}^{(N)} \pm i P_{y}^{(N)}\right), \\ P_{i}^{(N)} &= \left\{\chi_{ijnm}(-\omega, \omega, \omega) - ik \gamma_{ijnmz}(-\omega, \omega, \omega)\right\} A_{i}^{*} A_{n} A_{m}, \end{split} \tag{2}$$

$$i, j, n, m=x, y; \quad \gamma_{ijnmp} = \gamma_{ijnmp}^{(1)} + \gamma_{ijnmp}^{(2)} - \gamma_{ijnmp}^{(3)}, \quad \delta = -\operatorname{Im}(k),$$

причем оба тензора в (2), характеризующие кубическую нелинейность и ее ПД, симметричны относительно перестановки третьего и четвертого индексов.

Видно, что в случае распространения излучения в изотропной гиротропной среде (2) совпадает с формулой, полученной в [8]. Однако система (2) отличается от использованной в [1, 2], где в знаменателе вместо k стоит $k_{\pm} = k \mp \rho_0$. Это отличие приводит там к ошибочному появлению третьего слагаемого в выражении для угла НОП плоскости поляризации, а следовательно, и сопоставленного ему механизма НОА-3, который на самом деле отсутствует. Однако это не означает, что линейная гиротропия не оказывает на НОП и НОД никакого влияния. Физические причины последнего будут обсуждены чиже. Ошибка, допущенная в [1, 2], не была нами своевременно замечена при обобщении используемых там уравнений на случай взаимодействия встречных волн [9]. Для ее устранения достаточно положить C_{n5} в [9] равными нулю.

Решая (2) в приближении

тле

$$2\pi\omega^{2}\Big|\int_{0}^{L}\left[\left(P_{x}^{(N)}\left(z\right)\pm iP_{y}^{(N)}\left(z\right)\right)/A_{\pm}\left(z\right)\right]dz\Big|\ll kc^{2},$$

ограничивающем сверху длину кристалла $L:|\chi kL|A|^2|<|\epsilon|$, и пренебрегая линейным круговым дихроизмом ($\mathrm{Im}\rho_0=0$), получим следующие выражения для угла поворота $\varphi(z)=0.5\,\mathrm{Arg}\,(E_+E_-^*)$ эллипса поляризации распространяющегося излучения и его эллиптичности $B(z)=(|A_+|^2-|A_-|^2)/(|A_+|^2+|A_-|^2)$:

$$\varphi(z) = \varphi_0 + \rho_0 z + \Delta \varphi, \ B(z) = B_0 + 2\Delta B(1 - B_0^2).$$

Здесь $B_0 = B(0)$, $\varphi_0 = \varphi(0)$ — соответственно значения эллиптичности и угла поворота эллипса поляризации преломленной волны,

$$\Delta \varphi = (\varphi_{1(1)} + \varphi_{1(2)}) + (\varphi_{2(1)} + \varphi_{2(2)}) + (\varphi_{3(1)} + \varphi_{3(2)}) + (\varphi_{4(1)} + \varphi_{4(2)}),
\Delta B = (B_{1(1)} + B_{1(2)}) + (B_{2(1)} + B_{2(2)}) + (B_{3(1)} + B_{3(2)}) + (B_{4(1)} + B_{4(2)}).$$
(3)

В (3) использованы следующие обозначения:

$$\begin{split} & \varphi_{1(m)} = \operatorname{Re} \left\{ \Omega_{1}^{(m)} \left(k \rho \right) \right\}; \quad B_{1(m)} = -\operatorname{Im} \left\{ \Omega_{1}^{(m)} \left(k \rho \right) \right\}; \quad \varphi_{2(m)} = -\operatorname{Im} \left\{ \Omega_{1}^{(m)} \left(\sigma \right) \right\}; \\ & B_{2(m)} = -\operatorname{Re} \left\{ \Omega_{1}^{(m)} \left(\sigma \right) \right\}; \quad \varphi_{3(m)} = -\operatorname{Re} \left\{ \Omega_{2}^{(m)} \left(\sigma \right) \right\}; \quad B_{3(m)} = \operatorname{Im} \left\{ \Omega_{2}^{(m)} \left(\sigma \right) \right\}; \\ & \varphi_{4(m)} = -\operatorname{Im} \left\{ \Omega_{2}^{(m)} \left(k \rho \right) \right\}; \quad B_{4(m)} = -\operatorname{Re} \left\{ \Omega_{2}^{(m)} \left(k \rho \right) \right\}, \end{split}$$

где

$$\rho = \{\rho_1, \ \rho_2, \ \dots, \ \rho_8\}; \quad \sigma = \{\sigma_1, \ \sigma_2, \ \dots, \ \sigma_8\}.$$

Явный вид отличных от нуля $\rho_{\alpha}(\widehat{\gamma})$ и $\sigma_{\alpha}(\widehat{\chi})$ для всех классов высшей и средней категорий приведен в табл. 1. При ее заполнении конкретный вид $\widehat{\chi}$ брался из [6], а $\widehat{\gamma}$ выводился методом циклических координат либо методом прямой проверки [6]. Выражения для $\Omega_1^{(m)}$ и $\Omega_2^{(m)}$ имеют вид

$$\Omega_{1}^{(m)}(\beta) = V \left[\beta_{1} C_{0}^{(m)} - \{ (\beta_{2} + (\beta_{8} - \beta_{2}) B_{0}^{2}) C_{2}^{(m)} + (\beta_{7} - \beta_{3} (1 - B_{0}^{2})) S_{2}^{(m)} \} \times \right] \times (1 - B_{0}^{2})^{-1/2} + (\beta_{5} C_{4}^{(m)} + \beta_{4} S_{4}^{(m)})/2],$$

$$\Omega_{2}^{(m)}(\beta) = V B_{0} \left[-\beta_{5} C_{0}^{(m)} + (\beta_{7} C_{2}^{(m)} - \beta_{8} S_{2}^{(m)}) (1 - B_{0}^{2})^{-1/2} + (\beta_{5} S_{4}^{(m)} - \beta_{4} C_{4}^{(m)})/2 \right],$$
(4)

где под β подразумевается $k\rho$ либо σ . В (4) $V=\pi\omega^2\cdot W_0/2kc^2$, $C_N^{(1)}=S_N\cos N\phi_0$; $C_N^{(2)}=C_N\sin N\phi_0$; $S_N^{(1)}=S_N\sin N\phi_0$; $S_N^{(2)}=-C_N\cos N\phi_0$; $S_N=(N\rho_0S_N^{(0)}-2\delta C_N^{(0)})/H_N$; $C_N=(N\rho_0C_N^{(0)}+2\delta S_N^{(0)})/H_N$; $H_N=(N\rho_0)^2+4\delta^2$; $S_N^{(0)}=\exp(-2\delta z)\cdot\sin N\rho_0z$; $C_N^{(0)}=\exp(-2\delta z)\cdot\cos(N\rho_0z)-1$; N=2, 4; $W_0=\{|A_+(0)|^2+|A_-(0)|^2\}/2$ —интенсивность преломленной волны.

Первая и вторая пары слагаемых в (3) обобщают на случай эллиптически поляризованного излучения известные механизмы НОА-1 [1, 2, 8] и НОА-2 [1, 2] и связанные с ними механизмы деформации эллипса поляризации, третья описывает хорошо изученный в случае изотропных сред эффект вращения и деформации эллипса поляризации [5]. Последняя группа слагаемых в (3) связана с механизмом НОП и НОД, являющимся аналогом терхьюновского вращения и деформации применительно к ПД кубической нелинейности. Его проявление ранее не рассматривалось. Данный механизм дает вклад в НОП и НОД лишь при распространении эллиптически поляризованного излучения через среды, обладающие анизотропией и ПД кубической нелинейности.

Как следует из (3), (4) и табл. 1, естественная оптическая активность влияет на НОП и НОД только в анизотропных средах. Этот результат полностью соответствует [8], однако значительно отличается от предсказаний [1, 2], согласно которым, например, такое влияние имеет место в кристаллах классов 32 и 622, аналогичных (с точки зрения рассматриваемой задачи) изотропным гиротропным средам. Заметим также, что в (3), (4) впервые проведен последовательный учет влияния на НОП и НОД линейного поглощения.

Для получения на основе исследования НОП и НОД спектроскопической информации о веществе необходимо, используя экспериментальные зависимости $\Delta \phi$ и ΔB от параметров падающего излучения, найти коэффициенты σ_{α} и ρ_{α} . Учитывая характер связи ΔB и $\Delta \phi$ с начальной ориентацией эллипса поляризации, с этой целью естественно

J ... 1

Коэффициенты σ_{α} и ρ_{α} ($\alpha=1,2,\ldots,8$), определяющие НОП и НОД эллипса поляризации в кристаллах высшей и средней категорий (использованы следующие обозначения: xx-1, xy-2, yx-3, yy-4, xxz-5, xyz-6, yxz-7, yyz-8)

Қлассы	σ_{α}	ρ_{α}
4		$\begin{array}{c} \rho_1 = \gamma_{25} + 2\gamma_{16} + 3\gamma_{28}, \\ \rho_4 = 2 (\gamma_{15} - \gamma_{18} - 2\gamma_{26}), \\ \rho_5 = 2 (\gamma_{28} - 2\gamma_{16} - \gamma_{25}), \\ \rho_6 = \gamma_{15} - 2\gamma_{26} + 3\gamma_{18} \end{array}$
422, 432	σ _{4,6} как в 4	ρ _{1,5} как в 4
3, 6, ∞	$\sigma_1 = 4\chi_{24}, \ \sigma_6 = 4\chi_{14}$	$\rho_1=4\gamma_{28},\;\rho_8=4\gamma_{18}$
32, 622, ∞2, ∞∞	σ ₆ как в 3	ρ1 как в 3
23	$ \begin{vmatrix} \sigma_3 = 2\chi_{14} - 2\chi_{41}, \\ \sigma_4 = 2\chi_{11} - \chi_{14} - \chi_{41} - 2\chi_{22} - 2\chi_{32}, \\ \sigma_6 = \chi_{11} - \chi_{22} - \chi_{32} + 3(\chi_{14} + \chi_{41})/2, \\ \sigma_7 = \chi_{14} - \chi_{41} + 2\chi_{32} - 2\chi_{22} \end{vmatrix} $	$\begin{array}{ c c c c c }\hline \rho_1 = (\gamma_{25} - \gamma_{38} + 2(\gamma_{16} - \gamma_{46}) + 3(\gamma_{28} - \gamma_{35})/2, & \rho_2 = 2(\gamma_{35} + \gamma_{28}), & \rho_5 = -\gamma_{25} - \gamma_{25} + \gamma_{28} + \gamma_{38} + 2\gamma_{46} - 2\gamma_{16}, & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{46}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{46}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{46}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{46}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{46}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{46}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{46}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{16}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{16}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{16}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{16}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{16}. & \rho_8 = \gamma_{35} - \gamma_{25} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{16}. & \rho_8 = \gamma_{35} - \gamma_{35} + \gamma_{28} - \gamma_{38} + 2\gamma_{16} + 2\gamma_{16}. & \rho_8 = \gamma_{35} - \gamma_{35} + \gamma_{35}$
4	σ₁,4,5,6 как в 4	$\begin{array}{ c c c c c c }\hline \rho_2 = 4\gamma_{28}, \; \rho_3 = 4\gamma_{18}, \; \rho_7 = 2\gamma_{18} - 2\gamma_{15} - \\ -4\gamma_{28}, \; \rho_8 = 2(\gamma_{28} - \gamma_{25} + 2\gamma_{16}) \end{array}$
4/m		
$\overline{3}$, $\overline{6}$, $6/m$, ∞/m	σ _{1,6} как в З	0
$\bar{3}m$, $\bar{6}m2$, $6/mmm$ ∞/mm , $\infty\infty m$	σ ₆ как в З	
$3m$, $6mm$, ∞m		ρ ₆ как в 3
$\overline{4}2m$, $\overline{4}3m$		ρ₂,8 как в 4
4mm	о _{4,6} как в 4	ρ _{4,6} как в 4
4/mmm, m3m		0
m3	о _{3,4,6,7} как в 23	V

воспользоваться методом углового фурье-анализа [3]. Однако часто этого оказывается недостаточно, так как вклады в одни и те же угловые гармоники могут давать одновременно и кубическая нелинейность и ее ПД. Поэтому необходимо предварительно разделять вклады различных механизмов НОП и НОД в поляризационное самовоздействие света.

Таблица 2

Возможности различных	- 1	методик с точки зрения получения спектроскопической информации о веществе $(\sigma_lpha = \sigma_lpha/({\sf Re}\ \{k\}-i\delta))$	нформации о веществе $\widetilde{(\sigma_{lpha}}$	$= \sigma_{\alpha}/(\text{Re}\left\{k\right\} - i\delta))$
÷	Изучение	Изучение только НОП	Изучение 1	Изучение НОП и НОД
Классы	$B_0=0$	$B_0 \neq 0$	$B_0 = 0$	$B_b \not= 0$
4	$\operatorname{Im}\{\widetilde{\sigma_{1,4,5}}\};\ \operatorname{Re}\{\rho_{1,4,5}\}$	$\operatorname{Im}\left\{\widetilde{\sigma}_{1},\rho_{\delta}\right\};\operatorname{Re}\left\{\widetilde{\sigma}_{\delta},\rho_{1}\right\};\sigma_{4,5};\rho_{4,5}$	01,4,5; \$1,4,5	01,4,5,6; P1,4,6,6
422, 432	$\operatorname{Im}\left\{\widetilde{\sigma}_{4}\right\};\;\operatorname{Re}\left\{\rho_{1,5}\right\}$	$Re\left\{\widetilde{\sigma_{6}},\ \rho_{1}\right\};\ \sigma_{4};\ \rho_{5}$	04; P1.5	O4.6; P1.6
3, 6, ∞	$\operatorname{Im}\left\{\widetilde{\sigma_{1}}\right\};\ \operatorname{Re}\left\{\rho_{1}\right\}$	$\operatorname{Im}\left\{\widetilde{\sigma}_{1},\ \rho_{0}\right\};\ \operatorname{Re}\left\{\widetilde{\sigma}_{6},\ \rho_{1}\right\}$	σ_1 ; ρ_1	J. 5. 91.8
32, 622, ∞ 2, ∞ \odot	Re {ρ ₁ }	Re ($\widetilde{\sigma}_{6}, \ \rho_{1}$)	ρι	$\sigma_6,~ ho_1$
23	$\operatorname{Im}\left\{\widetilde{\sigma_{3}}-\widetilde{\sigma_{r}},\ \widetilde{\sigma_{4}}\right\};\ \operatorname{Re}\left\{\rho_{1,13,5}\right\}$	$\operatorname{Im}\left\{\widetilde{\sigma_{5}}\right\};\ \operatorname{Re}\left\{\widetilde{\sigma_{6}},\ \rho_{1,2}\right\};\ \sigma_{4,7};\ \rho_{5,8}$	$\sigma_3 = \sigma_7; \ \sigma_4; \ \rho_1, 2, 5$	O3,4,6,7; P1,2,5,8
4-	$\operatorname{Im}\left(\widetilde{\sigma}_{1,4,5}\right)$; Re $\{\rho_{2},\ \rho_{3}-\rho_{7}\}$	Im $\{\widetilde{\sigma_1}\}$; Re $\{\widetilde{\sigma_0}, \rho_{2,3}\}$; $\sigma_{4,5}$; $\rho_{7,8}$	σ ₁ ,4,5; ρ ₂ ; ρ ₃ — ρ ₇	J.4.5.6; \$2.3.7.8
4/m	$\operatorname{Im}\left\{\widetilde{\sigma}_{1,4,5}\right\}$	Im $\{\widetilde{\sigma}_{\lambda}\}$; Re $\{\widetilde{\sigma}_{\theta}\}$; $\sigma_{4,5}$	Ø _{1:415}	01,4,5,8
$\overline{3}, \ \widetilde{6}, \ 6/m, \ \infty/m$	$\operatorname{Im}\left(\widetilde{\sigma_{1}} ight)$	$\operatorname{Im}\left\{\widetilde{\sigma}_{1}\right\};\ \operatorname{Re}\left\{\widetilde{\sigma}_{6}\right\}$	$\sigma_{\rm f}$	$\sigma_{1,8}$
$3m$, $6m2$, $\infty \infty m$, $6/mmm$, ∞/mm	1	$\operatorname{Re}\left\{\widetilde{\sigma}_{\mathfrak{g}}\right\}$	1	σ ₆
3m, €mm, ∞m	1	Re $\{\widetilde{\sigma}_{\theta}\}$; Im $\{\rho_{\theta}\}$	1	ძ₀; ρε
42m, 43m	$\operatorname{Im}\left\{\widetilde{\sigma_{4}}\right\}$; Re $\left\{\rho_{2}\right\}$	Re (00, p2); 04; p8	σ_4 ; ρ_2	04,6; 02,8
4mm	$\operatorname{Im}\left\{\widetilde{\sigma}_{a}\right\};\;\operatorname{Re}\left\{ ho_{a}\right\}$	Re $\{\widetilde{\sigma_6}\}$; Im $\{\rho_8\}$; σ_4 ; ρ_4	04; p4	O4,6; P4,6
4]mmm, m3m	$\operatorname{Im}\left\{\widetilde{o}_{4}\right\}$	$\operatorname{Re}\left(\widetilde{\sigma}_{6}\right);\ \sigma_{4}$	σ_4	04.6
m3	$\operatorname{Im}\{\widetilde{\sigma_8} - \widetilde{\sigma_7}, \ \widetilde{\sigma_4}\}$	$ \operatorname{Im} \{\widetilde{\sigma}_3\}; \operatorname{Re} \{\widetilde{\sigma}_6\}; \sigma_{4,7} $	$\sigma_3 - \sigma_7; \ \sigma_4$	G8.4.817

Последнее можно сделать, измеряя нелинейную деформацию $\Delta B^{(\varkappa)}(\phi_0, B_0)$ и нелинейный поворот $\Delta \phi^{(\varkappa)}(\phi_0, B_0)$ эллипса поляризации при двух различных ориентациях кристалла относительно лабораторной системы координат, соответствующих $\varkappa=\pm 1$. Дело в том, что при повороте кристалла на 180° относительно оси 0X (изменение знака \varkappa) коэффициенты σ_α и ρ_α меняются различным образом:

$$\sigma_{1,2,5,8}^{(-1)} = -\sigma_{1,2,5,8}^{(1)}; \ \sigma_{3,4,6,7}^{(-1)} = \sigma_{3,4,6,7}^{(1)}; \ \rho_{1,2,5,8}^{(-1)} = \rho_{1,2,5,8}^{(1)}; \ \rho_{3,4,6,7}^{(-1)} = -\rho_{3,4,6,7}^{(1)},$$
(5)

тде $\rho^{(\pm 1)}(\sigma^{(\pm 1)})$ равно $\rho(\sigma)$, вычисленному соответственно при $\varkappa=\pm 1$. Заметим также, что $\rho_0^{(-1)}=\rho_0^{(1)}$. Существование зависимости коэффициентов σ_α и ρ_α от \varkappa связано с тем, что при заполнении табл. 1 компоненты тензоров $\widehat{\chi}$ и $\widehat{\gamma}$ брались в лабораторной системе координат, в то время как собственной для них является кристаллофизическая (при $\varkappa=1$ они совпадают).

Используя (4), (5), нетрудно показать, что

$$\begin{aligned}
& \varphi_{1(1)}^{(1)} (\varphi_0, B_0) + \varphi_{2(2)}^{(1)} (\varphi_0, B_0) = (\varphi_1 + \varphi_2 + \varphi_3 + \varphi_4)/4, \\
& \varphi_{2(1)}^{(1)} (\varphi_0, B_0) + \varphi_{1(2)}^{(1)} (\varphi_0, B_0) = (\varphi_1 + \varphi_2 - \varphi_3 - \varphi_4)/4, \\
& \varphi_{3(1)}^{(1)} (\varphi_0, B_0) + \varphi_{4(2)}^{(1)} (\varphi_0, B_0) = (\varphi_1 - \varphi_2 - \varphi_3 + \varphi_4)/4, \\
& \varphi_{4(1)}^{(1)} (\varphi_0, B_0) + \varphi_{3(2)}^{(1)} (\varphi_0, B_0) = (\varphi_1 - \varphi_2 + \varphi_3 - \varphi_4)/4,
\end{aligned} \tag{6}$$

где $\varphi_{1,2} = \Delta \varphi^{(1)}(\varphi_0, \pm B_0)$, $\varphi_{3,4} = \Delta \varphi^{(-1)}(-\varphi_0, \mp B_0)$ — углы НОП главной оси эллипса поляризации, полученные в результате четырех различных измерений. Абсолютно аналогичные соотношения можно выписать и для $B_{l(m)}^{(1)}(\varphi_0, B_0)$ (l=1, 2, 3, 4; m=1, 2). Как следует из (3), (4) и (6), определить коэффициенты ρ_α и σ_α .

Как следует из (3), (4) и (6), определить коэффициенты ρ_{α} и σ_{α} , а следовательно, получить информацию о компонентах тензора $\hat{\gamma}$ и $\hat{\chi}$ можно, перейдя в (6) к угловым фурье-компонентам [3] при нескольких значениях B_0 . Коэффициенты, которые при этом могут быть найдены, приведены в табл. 2, где также проведено сравнение возможностей различных методик. Видно, что количество спектроскопической информации о веществе, получаемой при изучении эллиптически поляризованного света, примерно в два раза больше, чем в случае использования линейно поляризованной волны [1, 2]. Сопоставление результатов данной работы и [9] позволяет сделать вывод, что использование двух волн эллиптической поляризации является еще более эффективным.

Авторы благодарны С. А. Ахманову и К. Н. Драбовичу за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

[1] Желудев Н. И., Петренко А. Д.//Кристаллография. 1984. 29, № 6. С. 1045. [2] Желудев Н. И., Петренко А. Д., Свирко Ю. П., Филиппова Г. С.//Изв. АН СССР, сер. физ. 1984. 48, № 3. С. 603. [3] Жданов Б. В., Желудев Н. И., Ковригин А. И., Яковлев Д. В.//Квант. электроника. 1981. 8, № 1. С. 98. [4] Ахманов С. А., Жданов Б. В., Желудев Н. И. и др.//Письма в ЖЭТФ. 1979. 29, № 5. С. 294. [5] Макег Р. D., Тегнипе R. W., Savage С. М.//Рhys. Lett. 1964. 12, N 18. Р. 507. [6] Сиротин Ю. И., Шаскольская М. П. Основы кристаллофизики. М., 1975. [7] Ахманов С. А., Хох-

лов Р. В. Проблемы нелинейной оптики. М., 1964. [8] Akhmanov S. A., Lyakhov G. A., Makarov V. A., Zharikov V. I.//Opt. Acta. 1982. 29, N 10. P. 1359. [9] Голубков А. А., Макаров В. А.//Опт. и спектр. 1986. 60, № 4. С. 869.

Поступила в редакцию -16.11.87

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989, Т. 30, № 2

УДК 535.36.01

ПОЛЯРИЗАЦИОННЫЕ СВОЙСТВА КОГЕРЕНТНОГО АНТИСТОКСОВА РАССЕЯНИЯ В КЛАССИЧЕСКОЙ МОДЕЛИ СТОЛКНОВИТЕЛЬНОЙ ПЛАЗМЫ

С. М. Гладков

(кафедра общей физики и волновых процессов)

На простой классической модели газовой среды получены поляризационные свойства когерентного антистоксова рассеяния света, выведенные ранее с помощью громоздкого квантового расчета. Результаты классического и квантового расчетов полностью совпадают,

В настоящее время наметилась тенденция использования простых классических моделей для описания эффектов, традиционно считавшихся квантовыми. Показано, например, что в классических нелинейных системах могут наблюдаться эффекты, аналогичные световому эху [1] и стимулированному излучению [2]. Развитие простых классических моделей представляется весьма полезным в тех случаях, где строгий квантовый подход требует громоздких и сложных вычислений.

В настоящей работе приводятся результаты попытки получить поляризационные свойства когерентного антистоксова рассеяния (КАРС), выведенные ранее с помощью аппарата неприводимых тензорных операторов (квантовый расчет) [3], на простой классической модели столкновительной плазмы [4]. Интерес к такой постановке задачи вызван необходимостью объяснения поляризационных свойств нерезонансного КАРС в лазерной плазме в условиях, далеких от резонанса волн накачки с плазменными колебаниями [5]. При плотности электронов в плазме $\sim 10^{19}$ см $^{-1}$ дискретные уровни атомов и ионов частично растворяются; строгий расчет кубической оптической восприимчивости при этом слишком сложен. В этом случае оправданно применение классической столкновительной модели плазмы [4, 6].

В этой модели вводятся скорость ${\bf v}$ и температура T_e свободных электронов среды. Температура среды T_0 и T_e могут не совпадать:

$$\frac{\partial \mathbf{v}}{\partial t} = -\frac{e}{m_e} \mathbf{E} - \mathbf{v} \mathbf{v}; \tag{1}$$

$$\frac{\partial T_e}{\partial t} = -\frac{2}{3} e \mathbf{v} \mathbf{E} - \delta \mathbf{v} \left(T_e - T_0 \right); \tag{2}$$

здесь $\delta = m_e/m_i$ — отношение массы электронов к массе ионов; **E** — напряженность внешнего электромагнитного поля; ν — в случае полностью ионизованной плазмы частота электрон-ионных столкновений; согласно [4] $\nu = \nu_0 (T_0/T_e)^{3/2}$. В этой зависимости $\nu(T_e)$ содержится причина оптической нелинейности такой модели.