[15] Waseda Y.//Progr. Mater. Science. 1981. 26. Р. 1—122. [16] Cowlam N., Sakata M., Davies H. A.//J. Phys. F. 1979. 9, N 11. Р. L203. [17] Золотухин И. В. Физические свойства аморфных металлических материалов. М., 1986. C. 31—32. [18] Physics and Applications of Invar Alloys/Ed. by H. Saito. Tokyo, 1978; Collins M. F.//Proc. Phys. Soc. 1965. 86. Р. 973.

Поступила в редакцию 01.02.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 3

УДК 517.955.8:507.222.22

0 1 774

ПРИБЛИЖЕННОЕ РЕШЕНИЕ УРАВНЕНИЯ ПУАССОНА В МОДЕЛИ Двумерной полупроводниковой структуры

Л. В. Калачев, И. А. Обухов

(кафедра математики)

Методом пограничных функций построено асимптотическое приближение по малому параметру к решению уравнения Пуассона для электростатического потенциала в прямоугольной области, моделирующей двумерную полупроводниковую структуру.

1. Постановка задачи. Моделирование явлений переноса заряда в полупроводниковых структурах необходимо при решении различных теоретических и прикладных задач. Особенно актуальной является задача численного моделирования процессов, протекающих в полупроводниковых приборах [1, 2].

При описании этих процессов обычно исходят из уравнений хорошо известной дрейфово-диффузионной модели, которые в случае невырожденного полупроводника имеют вид [1, 3]

$$\begin{aligned} \alpha^{\mu} \Delta \Psi &= n - p - N, \\ \frac{\partial n}{\partial t} &= -u_n - \beta^2 \nabla \mathbf{j}_n, \quad \frac{\partial p}{\partial t} = -u_p + \beta^2 \nabla \mathbf{j}_p, \\ \mathbf{j}_n &= \mu_n n \nabla \Phi_n, \quad \mathbf{j}_p = \mu_p p \nabla \Phi_p, \\ \mathbf{j} &= \mathbf{j}_n + \mathbf{j}_p + \frac{\alpha^2}{\beta^2} \frac{\partial}{\partial t} (\nabla \Psi), \\ n &= \exp \left\{ \Psi - \Phi_n \right\}, \quad p = \exp \left\{ \Phi_p - \Psi \right\}. \end{aligned}$$
(1)

Система (1) записана в безразмерном виде. Приняты следующие обозначения: $\alpha = L_0/L$, где $L_0 - длина$ Дебая [2, 3], а L — характерный для задачи размер; Ψ — электростатический потенциал, измеряемый в единицах kT/e (k — постоянная Больцмана, T — абсолютная температура, e — заряд электрона); n, p, N — концентрации электронов, дырок и плотность заряда легирующей примеси в единицах собственной концентрации n_i ; $u_n = u_p$ — члены, описывающие процессы генерации рекомбинации носителей заряда; $\beta^2 = \alpha^2 \tau / \tau_0$, где τ_0 — время диффузии на длину Дебая, а τ — характерное для задачи время; j, j_n , j_p — плотности токов в единицах $j^* = -en_i D_0/L_0$, D_0 — величина размерности коэффициента диффузии; μ_n и μ_p — подвижности носителей заряда; $\Phi_{n,p}$ — квазиуровни Ферми, измеряемые в тех же единицах, что и Ψ .

Решение существенно нелинейной самосогласованной системы (1) может быть получено методом последовательных приближений. При

этом на каждом шаге сначала решается уравнение для потенциала Ψ , а затем в поле, заданном этим потенциалом, решаются уравнения для *n* и *p*. Численное моделирование работы полупроводниковых приборов осложняется тем, что уравнение для Ψ является сингулярно возмущенным [4, 5], так как в него входит малый параметр $\varepsilon = \alpha (\sqrt{m})^{-1} \ll 1$ (здесь $m = \max \{N\}$). Для современных полупроводниковых приборов

 $\varepsilon = 10^{-1} \div 10^{-4}$. В данной статье строится асимптотика решения уравнения Пуассона для потенциала У по параметру є, что позволяет проводить эффективный качественный и количественный анализ решения. Аналогичные исследования проводились в одномерном случае, например в работах [6, 7], в двумерной постановке частный случай нулевых приложенных напряжений изучен в [8].

Задачу будем рассматривать в модельной области Ω (рисунок), имеющей один отрезок границы типа Γ_1 , соответствующей омическому контакту. Для реальных областей, содержащих два и более отрезков границы типа Γ_1 , построение асимптотики проводится аналогично.

Для потенциала У граничные условия имеют вид

$$\frac{\partial \Psi}{\partial v}\Big|_{\Gamma_{0}^{i}} = 0, \ \Psi|_{\Gamma_{1}} = V + \frac{1}{2} \ln \left[\left(\sqrt{\frac{N^{2}}{4} + 1} + \frac{N}{2} \right) / \left(\sqrt{\frac{N^{2}}{4} + 1} - \frac{N}{2} \right) \right],$$

где V — приложенное к границе Γ_1 напряжение, $\partial/\partial v$ — производная по направлению внешней нормали к границе.

Решение для Ψ будем искать в виде

$$\Psi = \Psi_0 + \varphi,$$

где

$$\Psi_{0} = \frac{1}{2} \Phi + \frac{1}{2} \ln \left[\left(\sqrt{\frac{N^{2}}{4} + 1 + y} + \frac{N}{2} \right) / \left(\sqrt{\frac{N^{2}}{4} + 1 + y} - \frac{N}{2} \right) \right]$$

и введены обозначения:

$$\Phi = \Phi_p + \Phi_n, \ y = np - 1 = \exp \left\{ \Phi_p - \Phi_n \right\} - 1.$$

Потенциал Ψ_0 является решением уравнения квазиэлектронейтральности

$$n - p - N = 0.$$

Функция Ψ_0 точно удовлетворяет граничному условию на границе Γ_1 (так как на $\Gamma_1: \Phi_n = \Phi_p = V, y = 0$) и вносит невязку порядка O(1) в граничные условия на Γ_0 (так как на $\Gamma_0: \partial \Phi / \partial v = \partial y / \partial v = 0$, но $\partial N / \partial v \neq \phi$). Последнее утверждение на практике нарушается лишь для приборов с полевыми затворами, которые мы здесь не рассматриваем. Сингулярно возмущенная краевая задача для потенциала ф имеет вид

$$\varepsilon^{2}\Delta\varphi = A(x, z) \operatorname{sh}\varphi + B(x, z) (\operatorname{ch}\varphi - 1) - g(x, z, \varepsilon),$$

$$\varphi|_{\Gamma_{1}} = 0, \frac{\partial\varphi}{\partial\nu}\Big|_{\Gamma_{0}^{i}} = \chi_{i}|_{\Gamma_{0}^{i}} = -\frac{\partial\Psi_{0}}{\partial\nu}\Big|_{\Gamma_{0}^{i}}.$$
(2)

Здесь введены обозначения: $A(x, z) = 2\sqrt{N^2/4 + 1 + y/m} \sim O(1)$, $B(x, z) = N/m \sim O(1)$, $g(x, z, \varepsilon) = \varepsilon^2 \Delta \Psi_0$. Заметим, что A > B при всех x и z. Учтем также, что функция $\Delta \Psi_0$ в некоторых подобластях $\overline{\Omega}$ (вблизи *оп*-переходов) может иметь порядок $O(\varepsilon^{-2})$. Будем считать, что $g(x, z, \varepsilon) \sim O(1)$ внутри $\overline{\Omega}$ и $g(x, z, \varepsilon) \sim O(\varepsilon)$ как вблизи, так и на самой границе области $\overline{\Omega}$. Все функции, входящие в (2), считаем достаточно гладкими.

Для обеспечения нужной степени гладкости членов асимптотики наложим следующие условия согласования:

$$\frac{\partial^{k}\chi_{1}}{\partial x^{k}}\Big|_{x=x_{0}} = \frac{\partial^{k}\chi_{2}}{\partial x^{k}}\Big|_{x=x_{1}} = 0, \quad \frac{\partial^{k+l}g}{\partial \varepsilon^{l} \partial x^{k}}\Big|_{\substack{x=x_{0}\\x=x_{1}}} = 0,$$

$$k=0, \ 1, \ 2, \dots, l=0, \ 1, \ 2, \dots,$$
(3)

а также естественные условия согласования граничных данных в угловых точках области $\overline{\Omega}$.

2. Алгоритм построения асимптотики. Асимптотическое разложение решения задачи (2) будем строить в виде

$$\begin{aligned} \varphi(x, z, \varepsilon) &= \overline{\varphi}(x, z, \varepsilon) + \Pi(x, \eta, \varepsilon) + Q_1(x, \eta, \varepsilon) + Q_5(\xi, z, \varepsilon) + \\ &+ Q_4(x, \eta^*, \varepsilon) + Q_3(\xi^*, z, \varepsilon) + Q_2(x, \eta, \varepsilon) + P_1(\xi, \eta, \varepsilon) + P_2(\xi, \eta^*, \varepsilon) + \\ &+ P_3(\xi^*, \eta^*, \varepsilon) + P_4(\xi^*, \eta, \varepsilon), \end{aligned}$$

$$(4)$$

где $\eta = z/\varepsilon; \eta^* = (b-z)/\varepsilon; \xi = x/\varepsilon; \xi^* = (a-x)/\varepsilon$ погранслойные переменные; φ — регулярная часть асимптотики; П, Q_i (i=1, 2, ..., 5) — обыкновенные, а P_i (j=1, 2, 3, 4) — угловые погранфункции [9, 10]. Каждое слагаемое в (4) представляет собой ряд по степеням ε , например

$$\overline{\varphi}(x, z, \varepsilon) = \sum_{i=0} \varepsilon^{i} \overline{\varphi}_{i}(x, z).$$

Погранфункции стремятся к нулю при стремлении соответствующих погранслойных переменных к бесконечности.

Обозначим правую часть уравнения из (2) (без g(x, z, e)) через $f(\varphi, x, z)$:

$$f(\varphi, x, z) = A(x, z) \operatorname{sh} \varphi + B(x, z) (\operatorname{ch} \varphi - 1)$$

и представим f в виде, аналогичном (4):

$$f = \bar{f} + \Pi f + \sum_{i=1}^{5} Q_i f + \sum_{i=1}^{4} P_i f,$$

5 ВМУ, № 3, физика, астрономия

(5)

65

где

$$\begin{split} f(x, z, \varepsilon) &= f(\varphi(x, z, \varepsilon), x, z), \\ \Pi f(x, \eta, \varepsilon) &= f(\overline{\varphi}(x, \varepsilon\eta, \varepsilon) + \Pi(x, \eta, \varepsilon), x, \varepsilon\eta) - \overline{f}(x, \varepsilon\eta, \varepsilon), \\ Q_1 f(x, \eta, \varepsilon) &= f(\overline{\varphi}(x, \varepsilon\eta, \varepsilon) + Q_1(x, \eta, \varepsilon), x, \varepsilon\eta) - \overline{f}(x, \varepsilon\eta, \varepsilon), \\ Q_5 f(\xi, z, \varepsilon) &= f(\overline{\varphi}(\varepsilon\xi, z, \varepsilon) + Q_5(\xi, z, \varepsilon), \varepsilon\xi, z) - \overline{f}(\varepsilon\xi, z, \varepsilon), \\ P_1 f(\xi, \eta, \varepsilon) &= f(\overline{\varphi}(\varepsilon\xi, \varepsilon\eta, \varepsilon) + Q_1(\varepsilon\xi, \eta, \varepsilon) + Q_5(\xi, \varepsilon\eta, \varepsilon) + \\ + P_1(\xi, \eta, \varepsilon), \varepsilon\xi, \varepsilon\eta) - Q_1 f(\varepsilon\xi, \eta, \varepsilon) - Q_5 f(\xi, \varepsilon\eta, \varepsilon) - \overline{f}(\varepsilon\xi, \varepsilon\eta, \varepsilon). \end{split}$$

Для других Q, P-функций — аналогичные выражения.

Подставляя ряды (4), (5) в (2) и приравнивая однотипные слагаемые при одинаковых степенях ε , получим уравнения и дополнительные условия для членов асимптотики. В нулевом приближении по ε для ϕ_0 имеем уравнение

$$A(x, z) \operatorname{sh} \overline{\phi_0} + B(x, z) (\operatorname{ch} \overline{\phi_0} - 1) = g(x, z, 0).$$
(6)

Так как A > B всюду в $\overline{\Omega}$, то уравнение (6) имеет единственное решение:

$$\overline{\varphi_0} = \ln \left\{ \frac{B + g(x, z, 0) + \sqrt{(B + g(x, z, 0))^2 + A^2 - B^2}}{A + B} \right\}$$

Поскольку мы предположили, что g(x, z, 0) на Γ равна нулю, то и $\varphi_0|_{\Gamma} = 0$ и, следовательно, все Π , Q и *P*-функции в нулевом приближении тождественно равны нулю.

Аналогичным образом в первом приближении по є получим

$$\overline{\varphi}_{1} = \ln \left\{ \frac{B + g'_{g}(x, z, 0) + \sqrt{(B + g'_{g}(x, z, 0))^{2} + A^{2} - B^{2}}}{A + B} \right\}.$$

Введем обозначение:

 $F(x, z) = A(x, z) \operatorname{ch} \overline{\phi}_0(x, z) + B(x, z) \operatorname{sh} \overline{\phi}_0(x, z).$

Для $\Pi_1(x, \eta)$ имеем задачу:

$$\frac{\partial^2 \Pi_1}{\partial \eta^2} = F(x, 0) \Pi_1, \quad \Pi_1(x, 0)|_{\mathbf{r}_0^1, \mathbf{r}_0^2} = 0,$$

$$\Pi_1(x, 0)|_{\mathbf{r}_1} = -\overline{\varphi}_1(x, 0), \quad \Pi_1(x, \infty) = 0.$$
(7)

Отсюда

$$\Pi_1(x, \eta) = \gamma_1 \exp\{-\sqrt{F(x, 0)} \eta\}, \text{ rge } \gamma_1(x) = \begin{cases} -\overline{\varphi_1}(x, 0), x \in \Gamma_1 \\ 0, x \in \Gamma_0^1 \bigcup \Gamma_0^2. \end{cases}$$

Для функции П₁ справедлива экспоненциальная оценка:

 $|\Pi_1(x, \eta)| \leq c_0 \exp(-\varkappa \eta), \ 0 \leq x \leq a, \ \eta > 0$ (8)

(со и х — некоторые положительные постоянные).

Отметим, что в силу (3) Π_1 является сколь угодно гладкой в $\overline{\Omega}$ и не вносит невязок в условия на Γ_0^{-1} и Γ_0^{-2} .

Для функций $Q_{1,1}(x, \eta)$ и $Q_{5,1}(\xi, z)$ имеем задачи:

$$\frac{\partial^{2}Q_{1,1}}{\partial\eta^{2}} = F(x, 0)Q_{1,1}, Q_{1,1}(x, 0)|_{\Gamma_{1},\Gamma_{0}^{2}} = 0, \qquad (9)$$

$$\frac{\partial Q_{1,1}}{\partial\eta} \left|_{\Gamma_{0}^{1}} = \left(\chi_{1}(x) - \frac{\partial\overline{\varphi_{0}}}{\partial z}(x, 0)\right)\right|_{\Gamma_{0}^{1}}, Q_{1,1}(x, \infty) = 0; \qquad (10)$$

$$\frac{\partial^{2}Q_{5,1}}{|\partial\xi|} = F(0, z)Q_{5,1}, Q_{5,1}(\infty, z) = 0, \qquad (10)$$

$$\frac{\partial Q_{5,1}}{\partial\xi} \left|_{\xi=0} = \left(\chi_{5}(z) - \frac{\partial\overline{\varphi_{0}}}{\partial x}(0, z)\right).$$

Отсюда

$$Q_{1,1} = -\frac{\gamma_2(x)}{\sqrt{F(x,0)}} \exp\{-\sqrt{F(x,0)}\eta\},$$
$$Q_{5,1} = -\frac{\chi_5 - \frac{\partial\overline{\varphi_0}}{\partial x}(0,z)}{\sqrt{F(0,z)}} \exp\{-\sqrt{F(0,z)}\xi\}$$

где

$$\gamma_2(x) = \begin{cases} \chi_1(x) - \frac{\partial \overline{\varphi_0}}{\partial z}(x, 0), & x \in \Gamma_0^1, \\ 0, & x \in \Gamma_1 \bigcup \Gamma_0^2. \end{cases}$$

Остальные Q-функции в первом приближении строятся аналогично. В силу условий (3) Q-функции являются сколь угодно гладкими в $\overline{\Omega}$ и для них справедливы оценки, аналогичные (8). Нетрудно убедиться, что в первом порядке по ε все P-функции тождественно равны нулю.

При выполнении условий (3) построение асимптотики может быть продолжено до любого порядка по в. При этом П, Q-функции определяются из линейных обыкновенных дифференциальных уравнений, аналогичных (7), (9), (10), с неоднородностями, имеющими оценки типа (8). Очевидно, что П, Q-функции имеют такие же оценки.

Угловые погранфункции не равны нулю начиная со второго порядка по ε . Они устраняют невязки в граничных условиях вблизи вершин прямоугольника $\overline{\Omega}$, вносимые П, Q-функциями. Определяются *P*функции стандартным образом [9, 10] как решения линейных эллиптических уравнений с постоянными коэффициентами. Выпишем здесь оценку для $P_{1,i}$ (ξ , η) ($i \ge 2$):

 $|P_{1,i}(\xi, \eta)| \leq c_0 \exp\{-\kappa(\xi+\eta)\}, \ \xi \geq 0, \ \eta \geq 0.$

Для остальных Р-функций имеют место аналогичные оценки.

Используя результаты работ [9, 11, 12], можно показать, что при достаточно малых в существует единственное решение задачи (2), причем частичная сумма ряда (4) *k*-го порядка является равномерным в $\overline{\Omega}$ приближением для этого решения с точностью $O(e^{k+1})$.

3. Заключение. В данной работе показано, каким образом может быть построено приближенное решение уравнения Пуассона для электростатического потенциала Ψ в модели двумерной полупроводниковой структуры. При построении асимптотики использовались методы теории сингулярных возмущений [4, 9, 10]. Полученное асимптотическое разложение находит применение при исследовании процессов переноса заряда в полупроводниках. В частности, как показали численные расчеты на ЭВМ, использование асимптотики в качестве начального приближения ускоряет сходимость разностных алгоритмов решения системы (1) в 5÷10 раз. Полученные здесь выражения позволяют аналитически исследовать целый ряд задач физики полупроводниковых приборов. Асимптотики достаточно хорошо описывают решение задачи как в квазиэлектронейтральных областях, так и в областях пространственного заряда.

В заключение авторы выражают благодарность В. Ф. Бутузову за внимание к работе и полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

[1] Энгль В. Л., Диркс Х. К., Майнерцхаген Б.//ТИИЭР. 1983. 71, № 1. С. 14. [2] Зи С. Физика полупроводниковых приборов. М. 1984. Т. 1, 2. [3] Бонч-Бруевич В. Л., Калашников С. Г. Физика полупроводников. М., 1977. [4] Васильева А. Б., Бутузов В. Ф. Сингулярно возмущенные уравнения в критичских случаях. М., 1978. [5] Васильева А. Б., Стельмах В. Г.// //ЖВМ и МФ. 1977. 17, № 2. С. 339. [6] Магкоwich Р. А., Ringhofer C. А.// //Дифи и МФ. 1977. 17, № 2. С. 339. [6] Магкоwich Р. А., Ringhofer C. А.// //Д. Аррl. Math. 1984. 44, N 2. Р. 231. [7] Белянин М. П./ЖВМ и МФ. 1986. 26, № 2. С. 306. [8] Магкоwich Р. А. The Stationary Semiconductor Device Equations. Springer-Verlag Wien. N. Y., 1985. [9] Бутузов В. Ф.//Дифф. уравнения. 1973. 9, № 9. С. 1654. [10] Бутузов В. Ф.//Дифф. уравнения. 1979. 15, № 10. С. 1848. []11] Ргоtter М. Н., Weinberger Н. Махітит principles in differential equations. Englewood Cliffs. N. J.: Prentice-Hall. 1967. [12] Вольперт К. И., Худяев С. И. Анализ в классах разрывных функций и уравнения математической физики. М., 1975.

Поступила в редакцию 11.03.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 3

УДК 537.324

АНОМАЛЬНАЯ ЗАВИСИМОСТЬ ЭДС ХОЛЛА И ТЕРМОЭДС ОТ МАГНИТНОГО ПОЛЯ В p-Bi₂Te₃

В. А. Кульбачинский, Н. Е. Клокова, С. Я. Скипидаров, Я. Горак (ЧССР), П. Лоштяк (ЧССР), С. А. Азоу (Ирак)

(кафедра физики низких температур)

Обнаружены осцилляции холловского напряжения у монокристаллов p-Bi₂Te₃, имеющие вид серии плато. Квантование эффекта Холла вызвано стабилизацией уровня Ферми в примесной зоне, расположенной над потолком зоны тяжелых дырок в Bi₂Te₃(Sn).

1. Теллурид висмута представляет собой полупроводник из группы кристаллов типа A_2B_3 и имеет тип симметрии $D^5_{3d}(R3m)$. Кристаллическая структура Bi_2Te_3 образована повторением пятислойных пакетов из атомов Bi и теллура. Ширина непрямой запрещенной зоны в Bi_2Te_3 составляет ~0,15 эВ [1]. При концентрации дырок менее $5 \cdot 10^{18}$ см⁻³ холловская концентрация носителей тока совпадает с определенной по эффекту Шубникова—де Гааза с учетом того, что поверхность Ферми p-Bi₂Te₃ состоит из шести эллипсоидов, центрированных в зеркальных плоскостях симметрии, с углом наклона по отношению к биссекторной оси. C_1 приблизительно 30° [2].