частоты взаимодействия атомов Ne( ${}^{3}P_{2}$ ) с атомами Ne( ${}^{3}P_{1,2}$ ) меньше 10 с<sup>-1</sup> [10], атомов Ne( ${}^{3}P_{0,2}$ ) с атомами неона в основном состоянии меньше 10<sup>2</sup> с<sup>-1</sup> [11], частоты гибели атомов Ne( ${}^{3}P_{0,2}$ ) при взаимодействии с нейтральными атомами Не меньше 1 с<sup>-1</sup> [12],

Полученные результаты приведены на рис. 1—3. Там же представлены кривые, полученные по формуле (2). Как видно из рисунков, в пределах экспериментальных погрешностей расчетная кривая согласуется с результатами наших экспериментов, что свидетельствует о возможности оценивать значения коэффициентов диффузии метастабильных атомов в бинарных смесях, используя закон Бланка.

Нами были проведены подобные измерения коэффициентов диффузии атомов  $Xe({}^{3}P_{2})$  в смеси Не—Xe, которые также подтверждают применимость закона Бланка для метастабильных атомов.

### СПИСОК ЛИТЕРАТУРЫ

[1] ВІапс М. А.//J. de Physique. 1908. 7. Р. 825. [2] Хастед Дж. Физика атомных столкновений. М., 1965. С. 506. [3] Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. М., 1979. Т. 10. С. 59. [4] Герасимов Г. Н., Лягушенко Р. Н., Старцев Г. П.//Опт. и спектр. 1971. 30. С. 606. [5] Богданова И. П., Бочкова О. П., Фриш С. Э.//Спектроскопия газоразрядной плазмы. Л., 1976. В. 1. С. 3. [6] Левченко М. А., Прилежаева И. А., Сорокин Г. М., Алексеев В. Г.//Метастабильные состояния атомов и молекул и методы их исследования. Чебоксары, 1979. С. 93. [7] Wieme W., Lenaerts J.//J. Сhem. Phys. 1980. 72. Р. 2708. [8] Shibkova L. V., Devyatov A. М.//Ргос. ESCAMPIG VI, Contrib. papers. Oxford, 1982. Р. 45. [9] Бочкова О. П., Сукнасян Э. А.//Опт. и спектр. 1986. 61. С. 1180. [10] Демидов В. И., Колоколов Н. Б.//ЖТФ. 1978. 48. С. 1832. [11] Phelps A. V.//Phys. Rev. 1959. 114. Р. 1011. [12] Девдариани А. Э., Загребин А. Л.//Опт. и спектр. 1985. 59. С. 256. [13] Lenaerts J., Wieme W.//ICPIG-XI. Prague, 1973. Р. 37. [14] Моlnar J. Р./Phys. Rev. 1951. 83. Р. 940. [15] Dixon J. R., Graut F. А.//Phys. Rev. 1957. 107. Р. 118. [16] Загребин А. Л., Павловская Н. А.//Опт. и спектр. 1987. 62. С. 27. [17] Смирнов Б. М. Возбужденные атомы. М., 1982. С. 30-37.

Поступила в редакцию 21.06.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 3

#### УДК 535.416.3

## ОПТИМИЗАЦИЯ ФОРМЫ ЭЛЕКТРОСТАТИЧЕСКОГО ПРИВОДА В МЕМБРАННЫХ КОРРЕКТОРАХ ВОЛНОВОГО ФРОНТА

#### К. В. Шишаков

### (кафедра общей физики и волновых процессов)

Предложен алгоритм оптнмизации формы электростатических приводов в мембранных корректорах волнового фронта. На его основе рассмотрено проектирование мембранного корректора для компенсации фазовых искажений световой волны, прошедшей слой турбулентной атмосферы.

Компенсация фазовых искажений световой волны позволяет в ряде случаев существенно улучшить качество оптических систем [1]. Для этих целей при работе со слабыми световыми полями перспективно использование мембранных корректоров волнового фронта [2]. Формой поверхности пленочного зеркала в них управляют с помощью усилий, создаваемых плоскими электродами (электростатическими приводами), плотно заполняющими область активной апертуры [2, 3]. Одной из основных задач проектирования мембранных корректоров является обеспечение требуемой точности воспроизведения поверхностью зеркала детерминированных или случайных аберраций световой волны при наименьшем количестве каналов управления (электродов). Эта задача сводится к оптимизации формы электродов по критерию наименьшей среднеквадратичной ошибки аппроксимации фазовых искажений.

Целью работы является получение алгоритма оптимизации формы электродов и его применение в задаче компенсации фазовых искажений световой волны, прошедшей слой турбулентной атмосферы. Рассмотрим восстановление зеркалом фазовой аберрации  $\varphi(\mathbf{r})$ . Область активной апертуры условно заполним большим количеством электродов малых размеров. Будем объединять соседние электроды (заменять их комбинации электродами с большей площадью) таким образом, чтобы ошибка аппроксимации функции  $\varphi(\mathbf{r})$  возрастала в наименьшей степени. Запишем ошибку аппроксимации в виде

$$\Delta = \frac{1}{S} \int_{\Omega} \left( \varphi(\mathbf{r}) - \sum_{i=1}^{m} P_i R_i(\mathbf{r}) \right)^2 d^2 \mathbf{r}, \qquad (1)$$

где  $\Omega$  — область аппроксимации, S — ее площадь,  $P_i$  — усилия электродов, выбираемые из условия минимизации  $\Delta$ ,  $R_i$  — функции отклика зеркала на действия электродов.

Рассмотрим преобразование усидий  $P_i$  и ошибки  $\Delta$  после объединения l электродов в один. В дальнейшем все преобразованные величины будем обозначать знаком «штрих». Так как электроды можно занумеровать в произвольном порядке, будем считать, что объединяются первые l из них. В этом случае положим  $P_i' = P_i'$ ,  $i = 1, \ldots, l - 1$  и в соответствии с правилом множителей Лагранжа будем иметь

$$\Delta' = \Delta + \sum_{i=1}^{l-1} \lambda_i (P'_i - P'_l),$$

где  $\lambda_i$  — множители Лагранжа. Находя минимальное значение  $\Delta'$  по  $\lambda_i$ ,  $P_i'$  ( $\partial \Delta'/\partial \lambda_i = = 0$ ,  $\partial \Delta'/\partial P_i' = 0$ ) и выполняя ряд промежуточных вычислений, нетрудно получить

$$P'_{i} = c'_{il} \sum_{k=1}^{l} b_{k} + \sum_{j=l+1}^{m} c'_{ij} b_{j}, \quad i = 1, ..., m,$$

$$c'_{ij} = c_{ij} - \sum_{k=1}^{l-1} \sum_{s=1}^{l-1} h_{ks} (c_{ik} - c_{il}) (c_{sj} - c_{lj}), \quad i, j = 1, ..., m,$$
(2)

где  $c_{ij}(i, j=1, ..., m), h_{ij}(i, j=1, ..., l-1)$  — элементы матриц, обратных к матрицам соответственно с элементами  $a_{ij}, c_{ij}-c_{il}-c_{ll}+c_{ll}, a_{ij}=(R_i,R_j)/S, b_i=(\phi, R_i)/S$  круглые скобки обозначают скалярное произведение функций на области  $\Omega$ .

С учетом выражений (2) величины *Pi'*,  $\Delta'$  будут определяться по следующим формулам:

$$P'_{i} = P_{i} - \sum_{k=1}^{l-1} \sum_{j=1}^{l-1} h_{kj} \left( c_{ik} - c_{il} \right) \left( P_{j} - P_{l} \right),$$

$$\Delta' = \Delta + \sum_{k=1}^{l-1} \sum_{j=1}^{l-1} h_{kj} \left( P_{k} - P_{l} \right) \left( P_{j} - P_{l} \right).$$
(3)

Видно, что выражения (2), (3) позволяют легко определять значение  $\Delta'$  при уменьшении количества электродов. При этом исключается непосредственное трудоемкое вычисление  $\Delta'$  по формуле (1). Если в итерационную схему (2), (3) ввести условие объединения на каждом итерационном шаге только тех приводов, для которых разность  $\Delta' - \Delta$  оказывается минимальной, получим алгоритм дискретной оптимизации. Отметим, что для случайных фазовых искажений  $\phi(\mathbf{r})$  необходимо минимизировать разность  $\langle \Delta' - \Delta \rangle$ , усредненную по ансамблю реализаций.

Рассмотрим проектирование мембранного корректора для компенсации фазовых искажений  $\phi(\mathbf{r})$  световой волны, прошедшей слой турбулентной атмосферы. Известно [4], что для колмогоровской модели турбулентной атмосферы искажения  $\phi$  с высокой степенью точности можно представить в виде ряда из полиномов Цернике  $Z_i$  со

случайными коэффициентами 
$$\beta_i$$
:  $\phi_i(\mathbf{r}) = \sum_{i=1}^{n} \beta_i Z_i(\mathbf{r})$ ,  $(n = 10)$ . Управление коррек-

тором будем организовывать таким образом, чтобы зеркало компенсировало каждый из n полиномов по отдельности. Первый полином  $Z_1=1$  характеризует среднее по апертуре значение  $\phi(\mathbf{r})$  и не влияет на качество коррекции. Два следующих,  $Z_2$  и

 $Z_3$ , описывают средние по апертуре наклоны  $\phi(\mathbf{r})$ . Будем считать, что они идеально компенсируются наклоном зеркала как целого. Тогда, чтобы исключить из рассмотрения  $Z_1, Z_2, Z_3$ , в формуле (1) к функциям отклика зеркала  $R_i$  дополнительно добавим  $R_{m+i}(\mathbf{r}) = Z_i(\mathbf{r}), j = 1, 2, 3$ . В этом случае ошибка ( $\Delta$ ) может быть определена по формуле [4]

$$\langle \Delta \rangle \approx \sum_{i=4}^{10} \langle \beta_i^2 \rangle \Delta_i + \epsilon_{\text{oct}},$$

где  $\langle \beta^{2}_{i} \rangle = 0.023 (D/r_{0})^{5/3}$ ,  $i = 4 \div 6$ ;  $\langle \beta^{2}_{i} \rangle = 0.006 (D/r_{0})^{5/3}$ ,  $i = 7 \div 10$ ;  $\varepsilon_{ocr} = 0.0401 (D/r_{0})^{5/3}$ ; D -диаметр  $\Omega$ ;  $r_{0}$  — раднус корреляции Фрида;  $\Delta_{i}$  — среднеквадратичные ошибки анпроксимации  $Z_{i}$ .





Рис. 1. Оптимизируемое расположение круглых электродов. Штриховые линии охватывают оптимальные приводы для коррекции Z<sub>8</sub>

| Рис. | 2.                 | Pacn  | оло | ж | ние | эле | жт | род | OB I | з мембра | H- |
|------|--------------------|-------|-----|---|-----|-----|----|-----|------|----------|----|
| ном  | кор                | ректо | pe  | с | 17  | (a) | И  | 25  | (б)  | управля  | ю- |
|      | щими воздействиями |       |     |   |     |     |    |     |      |          |    |

Проведем оптимизацию формы электродов в задаче аппроксимации зеркалом полиномов  $Z_i$  ( $i=4\div10$ ). Поскольку защемление зеркала в оправе не позволяет получить  $Z_i$  на всей поверхности зеркала, днаметр D будем считать в 1,5 раза меньщим днаметра зеркала. В качестве начальных электродов выберем 31 круглый электрод, как показано на рис. 1. Оптимизация формы электродов проводилась по алгоритму (2), (3) с l=2. Функции отклика  $R_i$  зеркала определялись по известной функции Грина [5]. В табл. 1 приведены номера объединенных электродов (разделены

Таблица і

| i                 | Номера полученных электродов                                                                         | N                                           | ð                                                                                                                 |
|-------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 4<br>6<br>8<br>10 | 1—31<br>20; 21;; 31<br>31,20,21; 22—24; 25—27; 28—30<br>Показаны на рис. 1<br>20; 22; 24; 26; 28; 30 | $\begin{array}{c}1\\12\\4\\6\\6\end{array}$ | $ \begin{array}{c} < 10^{-5} \\ 6 \cdot 10^{-5} \\ 9, 4 \cdot 10^{-3} \\ 10^{-2} \\ 2 \cdot 10^{-4} \end{array} $ |

запятыми или знаком «—»). Индекс *i* обозначает номер аппроксимируемого полинома  $Z_i$ , величина N — количество полученных электродов (разделены точкой с запятой), величина  $\delta$  — увеличение ошибок  $\Delta_i$  после объединения отмеченных электродов. Время численного счета на ЭВМ типа СМ-4 составило порядка 10 мин. С учетом полученных результатов (табл. 1) были рассмотрены две схемы расположения электродов (рис. 2,  $\alpha$ ,  $\delta$ ) для одновременной компенсации с помощью деформации поверхности зеркала первых одиннадцати полиномов Цернике. Диаметр зеркала попрежнему в 1,5 раза превышал *D.* Диаметры окружностей разбиения области зеркала на электроды составляли: на рис. 2, a = 0, 4 D; *D*; 1,2*D*; на рис. 2, 6 = 0, 33 D; 0,66 *D*; *D*; 1,2 *D*. В табл. 2 приведены полученные ошибки аппроксимации  $\sqrt[4]{\Delta_i}$ . Индекс *i* обозначает аппроксимируемый полином  $Z_i$ , величина m — количество электродов.

Таблица 2

| m        | i                |                          |                |               |              |              |  |  |  |  |
|----------|------------------|--------------------------|----------------|---------------|--------------|--------------|--|--|--|--|
|          | 2; 3             | 4                        | 5; 6           | 7;8           | 9; 10        | 11           |  |  |  |  |
| 17<br>25 | 0,0050<br>0,0043 | $<^{10^{-4}}_{<10^{-4}}$ | 0,018<br>0,018 | 0,19<br>0,087 | 0,05<br>0,05 | 0,32<br>0,08 |  |  |  |  |

В заключение отметим, что рассмотренный алгорнтм оптимизации формы электродов может быть применен и к более сложным задачам оптимального проектирования адаптивных оптических систем с мембранными корректорами волнового фронта.

## СПИСОК ЛИТЕРАТУРЫ

[1] Харди Д. У.//ТИИЭР. 1978. 66, № 6. С. 31. [2] Grosso R. P., Yellin M.//J. Opt. Soc. Am. 1977. 67, N 3. Р. 399. [3] Исупов А. Н., Шишаков К. В.//Тез. докл. 2-й Всесоюз. конф. «Формирование оптического изображения и методы его обработки». Кишинев, 1985. С. 124. [4] Wang J., Markey J.//J. Opt. Soc. Am. 1978. 68, N 1. Р. 78. [5] Соболев С. Л. Уравнения математической физики. М., 1966.

Поступила в редакцию 29.08.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 3

# ОПТИКА И СПЕКТРОСКОПИЯ

УДК 532.132

## О НЕЛИНЕЙНОЙ ОПТИЧЕСКОЙ СПЕКТРОСКОПИИ ОТРИЦАТЕЛЬНЫХ ИОНОВ В СВЕРХТЕКУЧЕМ ГЕЛИИ

#### Н. И. Пушкина

### (кафедра квантовой радиофизики)

Рассмотрено взаимодействие механических колебаний электронных полостей в жидком гелии с оптическими волнами. Мощность рассеянной такими полостями световой волны может быть наблюдаемой величиной при концентрациях полостей.  $n \approx 10^{11} \div 10^{12}$  см<sup>-3</sup>.

Известно, что отрицательный ион в сверхтекучем гелии — это избыточный электрон, который образует вокруг себя полость раднусом около 20 А. Поскольку раднус полости существенно зависит от давления в среде, то механические колебания такой полости оказываются связанными за счет электрострикции со световыми волнами, распространяющимися в гелии. Это обстоятельство может быть использовано для исследования движения электронных полостей в гелии с помощью интенсивного лазерного излучения.

Предварительные оценки показали, что традиционное в нелинейной оптике рассеяние света на флуктуационных колебаниях электронных полостей дает очень малый, по-видимому, ненаблюдаемый эффект при реально достижимых в настоящее время концентрациях избыточных электронов в гелии. Поэтому в данной работе предлагается рассмотрение нелинейного взаимодействия света с колебаниями элект-