Р. 636. [4] Герке Р. Р., Денисюк Ю. Н., Локшин В. И.//Оптико-механическая промышленность. 1968. № 7. С. 22. [5] Назарова Л. Г.//Опт. и спектр. 1970. 34. С. 757. [6] Дрейден Г. В., Островский Ю. И., Шведова Е. Н.//Опт. и спектр. 1972. 32. С. 367. [7] Арутюнян А. Г., Ахманов С. А., Голяев Ю. Л. и др.//ЖЭТФ. 1973. 64, № 5. С. 1511. [8] Аракелян С. М., Пахалов В. Б., Чиркин А. С.//Опт. и спектр. 1976. 40, № 6. С. 1055. [9] Бергер И. К., Дерюгин И. А., Михеенко А. В.//Приб. и техн. эксперимента. 1978. № 1. С. 197. [10] Пахалов В. Б., Чиркин А. С., Юсубов Ф. М./Квант. электроника. 1979. 6, № 1. С. 57. [11] Кузин В. А., Стаселько Д. И., Стригун В. Л.//Оптикомеханическая промышленность. 1979. № 2. С. 57. [12] Алексеев В. А., Стригун В. Л., Шуленин А. В.//Журн. прикл. спектр. 1986. 45, № 1. С. 137. [13] Larsson A., Salzman J., Mittelstein М., Yariv А.//J. Аррl. Phys. 1986. 60, N 1. Р. 66. [14] Алексеев Э. И., Базаров Е. Н., Григоръянц В. В. и др.//Квант. электроника. 1977. 4, № 9. С. 2029. [15] Беловолов М. И., Гурьянов А. Н., Гусовский Д. Д. и др.//Там же. 1985. 12, № 9. С. 1873.

Поступила в редакцию 25.05.88

(1)

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 4

АКУСТИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

УДК 534.222

КИНЕТИЧЕСКОЕ УРАВНЕНИЕ ОДНОМЕРНОЙ АКУСТИЧЕСКОЙ ТУРБУЛЕНТНОСТИ

О. В. Руденко, В. А. Хохлова

(кафедра акустики)

Получено кинетическое уравнение типа Больцмана для функции распределения параметров случайной последовательности слабых ударных волн с учетом движения разрывных фронтов и их парных соударений. Исследована эволюция спектра интенсивности ансамбля слабых ударных волн с конечной шириной фронта.

Изменение статистических свойств мощного акустического шума во многом определяется нелинейными эффектами: образованием, движением и взаимодействием ударных фронтов [1, 2]. До сих пор этот процесс не удалось описать аналитически. Мы предлагаем исследовать его, исходя из аналогии между слабыми ударными волнами и газом неупруго взаимодействующих частиц [3]. На этом пути удается получить кинетическое уравнение типа Больцмана для функции распределения параметров ансамбля слабых ударных волн. Обратимся к выводу этого уравнения, его решению и расчету некоторых средних.

Пусть поле на расстоянии х представляет собой случайную последовательность слабых ударных волн — «ступенек» (рис. 1), эволюция которой описывается уравнением Бюргерса:

 $\frac{\partial u}{\partial x} - \frac{\varepsilon}{c_0^2} u \frac{\partial u}{\partial \tau} = \frac{b}{2c_0^3 \rho_0} \frac{\partial^2 u}{\partial \tau^2}.$

Здесь u — колебательная скорость в волне, распространяющейся вдоль оси x; $\tau = t - x/c_0$ — время в сопровождающей системе координат; c_0 — скорость звука; ε , b — параметры нелинейности и диссипации; ρ_0 — равновесная плотность среды.

64

Движение каждого разрыва в «бегущей» системе координат (т, х) в соответствии с (1) происходит по закону

$$\frac{d\tau_i}{dx} = -\frac{\varepsilon}{2c_0^2}(u_i + u_{i+1}), \qquad (2)$$

где τ_i — время возникновения *i*-го ударного фронта; u_i и u_{i+1} — соответственно минимальное и максимальное значение скорости на *i*-м разрыве.

Если затухание мало, то ширина фронта волны много меньше, чем промежуток времени $\Delta \tau$ между соседними разрывами (акустическое число Рейнольдса $\Gamma^{-1} = \varepsilon c_{0}\rho_{0}m_{0}\tau_{0}/b \gg 1$), и взаимодействие фронтов происходит аналогично мгновенному, абсолютно неупругому соударению частиц [3]. Действительно, сопоставим высоте каждой «ступеньки» (рис. 1) (u_{i+1} — u_{i}) массу частицы m_{i} , а изменению ее сопровожда-

Рис. 1. Отрезок реализации процесса, состоящего из случайной последовательности слабых ударных воли на различных расстояниях $x_1 < x_2$ (соответственно сплошная и штриховая линии)

Рис. 2. Частотные зависимости спектра интенсивности в логарифмическом масштабе $\widetilde{G}(\omega\tau_0) = \ln [G(\omega)/m_0^2\tau_0]$ случайной волны (8) (силошные линии) и регулярной по *m* волны $g_0(x, m) = \delta(m - \langle m \rangle)$ (штриховые линии) на различных расстояниях x/x_p (цифры у кривых)

ющей координаты $d\tau_i/dx$ — скорость v_i этой частицы. Тогда, как видно из (2), каждый последующий (*i*+1)-й фронт догоняет предыдущий *i*-й и при их столкновении образуется новый разрыв, параметры которого удовлетворяют законам сохранения «массы» и «импульса»:

$$m_i' = m_i + m_{i+1}, \quad m_i' v_i' = m_i v_i + m_{i+1} v_{i+1}.$$

Пусть вероятность появления *i*-го разрыва с амплитудой m_i зависит только от промежутка времени $\Delta \tau$, прошедшего с момента возникновения предыдущего (i-1)-го. Введем функцию распределения $g(x; \Delta \tau, m)$ — плотность вероятности того, что между двумя соседними разрывами прошло время $\Delta \tau$ и амплитуда второго из них равна m.

Эволюция распределения $g(x; \Delta \tau, m)$ происходит за счет относительного движения разрывов, поскольку скорость каждой последующей «ступеньки» $d\tau_i/dx$ больше скорости предыдущей $d\tau_{i-1}/dx$ на $\epsilon(m_i+m_{i-1})/2c_0^2$ (см. (2)) и ступеньки догоняют друг друга; при этом промежуток $\Delta \tau$ между ними уменьшается, а распределение по *m* остается прежним. Столкновения также приводят к трансформации функ-

5 ВМУ, № 4, физика, астрономия

ции $g(x; \Delta \tau, m)$ — образуются ступеньки бо́льшей массы. Будем считать фронты достаточно крутыми и столкновения мгновенными, что справедливо для больших чисел Рейнольдса $\Gamma^{-1} \gg 1$.

Выделим достаточно длинный отрезок реализации τ случайного процесса (см. рис. 1), состоящий из $N(x) \gg 1$ ступенек. Тогда плотность вероятности $g(x; \Delta \tau, m)$ можно определить как отношение числа ступенек с данными параметрами $n(x; \Delta \tau, m)$ к общему числу $N(x): g(x; \Delta \tau, m) = n(x; \Delta \tau, m)/N(x)$. Будем считать, что число N(x) меняется только за счет столкновений внутри отрезка реализации; краевыми эффектами, если N достаточно велико, можно пренебречь.

Найдем приращение $n(x + \Delta x; \Delta \tau, m) = N(x + \Delta x) g(x + \Delta x; \Delta \tau, m)$:

$$n(x+\Delta x; \Delta \tau, m) = (L+I_+-I_-)n(x; \Delta \tau, m).$$
(3)

Здесь L — линейный оператор, характеризующий изменение $n(x; \Delta \tau, m)$ вследствие свободного движения разрывов; I_+ — интеграл столкновений, описывающий соударения, в результате которых образуются ступеньки с необходимыми параметрами ($\Delta \tau, m$), происходит увеличение $n; I_-$ — интеграл столкновений, описывающий соударения с участием разрывов с параметрами ($\Delta \tau, m$), в результате которых $n(x; \Delta \tau, m)$ уменьшается.

Рассмотрим сначала линейную часть (3). Чтобы на расстоянии $x + \Delta x$ получился разрыв с параметрами ($\Delta \tau$, m), необходимо на расстоянии x иметь картину поля, состоящую из следующих друг за другом волн ($\Delta \tau_1$, m_1) и ($\Delta \tau_2$, m), где $\Delta \tau_2 = \Delta \tau + \varepsilon (m + m_1)/2c_0^2$. Поскольку параметры соседних разрывов являются независимыми величинами, количество таковых будет равно

$$V(x)g(x; \Delta \tau_1, m_1)g(x; \Delta \tau + \varepsilon (m_1 + m)\Delta x/2c_0^2, m).$$
(4)

Величины $\Delta \tau_1$ и m_1 могут быть произвольными, поэтому просуммируем (4) по всем их возможным значениям и тогда найдем общее количество конфигураций на расстоянии x, приводящее при увеличении x на малую величину Δx к образованию ступеньки с параметрами ($\Delta \tau$, m):

$$\widehat{L}(n) = N(x) \int_{0}^{\infty} g(x; \Delta \tau_{1}, m_{1}) g(x; \Delta \tau + \varepsilon (m_{1} + m) \Delta x/2c_{0}^{2}, m) dm_{1} d\Delta \tau_{1}.$$
(5)

Разложим подынтегральное выражение в (5) в ряд вблизи точки $\Delta \tau$ при $\Delta x \rightarrow 0$ с точностью до линейных по Δx членов и, учитывая условие нормировки $\int_{0}^{\infty} g(x; \Delta \tau, m) d\Delta \tau dm = 1$, получим выражение для \mathcal{L}

в виде

$$\widehat{L}(n) = N(x) \left[g(x; \Delta \tau, m) + \frac{\varepsilon}{2c_0^2} \Delta x (m + \langle m \rangle) \frac{\partial g}{\partial \Delta \tau} \right].$$

Здесь $\langle m \rangle = \overline{m(x)} = \iint_{0}^{\infty} mg(x; \Delta \tau, m) d\Delta \tau dm$ среднее значение высоты

ступенек на расстоянии х.

Перейдем теперь к интегралу столкновений I_+ . Для того чтобы на расстоянии $x + \Delta x$ в результате столкновения двух ступенек образовался разрыв с параметрами (Δx , m), необходимо, чтобы на расстоянии

х был отрезок реализации, состоящий из трех последовательных ступенек (1, 2, 3), параметры которых удовлетворяют условиям

 $m_2+m_3=m, \ 0 < m_2 < m,$ $\Delta \tau_2 = \Delta \tau + (\epsilon/2c_0^2) \cdot (m_1+m_2)\Delta x,$ $\Delta \tau_3 < (\epsilon/2c_0^2) \ (m_2+m_3)\Delta x,$ $\Delta \tau_1, \ m_1$ — произвольные.

Просуммируем количество всех возможных конфигураций:

$$\widehat{I}_{+}[n(x; \Delta \tau, m)] = N(x) \int_{0}^{\infty} d\Delta \tau_{1} dm_{1} \times$$

$$\times \int_{0}^{m} dm_{2} \int_{0}^{\epsilon m \Delta x/2c_{0}^{2}} d\Delta \tau_{3}g(x; \Delta \tau_{1}, m_{1})g(x; \Delta \tau + \epsilon (m_{1} + m_{2}) \Delta x/2c_{0}^{2}, m_{2})g(x; \Delta \tau_{3}, m - m_{2}).$$

Разложив (6) аналогично (5) в ряд по Δx , приходим к следующему выражению для I_+ при $\Delta x \rightarrow 0$:

$$\widehat{I}_{+}[n] = N(x) \frac{\varepsilon}{2c_0^2} m\Delta x \int_0^m g(x; \Delta \tau, m_2) g(x; \Delta \tau = 0, m - m_2) dm_2.$$

Исключим теперь такие столкновения, в которых участвуют ступеньки с параметрами ($\Delta \tau$, m) — интеграл I_{-} . Следуя изложенной выше схеме, легко показать, что их количество в промежутке Δx будет равно

$$N(x)g(x;\Delta\tau_1, m_1)g\left(x;\Delta\tau+\frac{\varepsilon}{2c_0^2}(m+m_1)\Delta x, m\right)g(x;\Delta\tau_2, m_2),$$

где $\Delta \tau_2 < \varepsilon (m+m_2) \Delta x/2c_0^2$, m_2 , m_1 , $\Delta \tau_1$ — произвольны. Интегрируя по m_1 , m_2 , $\Delta \tau_1$, $\Delta \tau_2$ и переходя к пределу $\Delta x \rightarrow 0$, имеем

$$\widehat{I}_{-}[n] = N(x) \frac{\varepsilon}{2c_0^2} \Delta xg(x; \Delta \tau, m) \int_{0}^{\infty} (m+m_2)g(x; 0, m_2) dm_2.$$

Найденные выражения для L, l_+ , l_- позволяют представить уравнение (3) в виде

$$\frac{\partial g}{\partial x} + g \frac{\partial N/\partial x}{N} = \frac{\varepsilon}{2c_0^2} \left\{ (m + \langle m \rangle) \frac{\partial g}{\partial \Delta \tau} - g \int_0^\infty (m + m_2) \times g(x; 0, m_2) dm_2 + m \int_0^m g(x; \Delta \tau, m_2) g(x; 0, m - m_2) dm_2 \right\}.$$

Величину $(\partial N/\partial x)/N$ можно также выразить через $g(x; \Delta \tau, m)$. Тогда 5* 67

(6)⁻

получаем замкнутое кинетическое уравнение для функции распределения $g(x; \Delta \tau, m)$:

$$\frac{\partial g}{\partial x} - \frac{\varepsilon}{2c_0^2} (m + \langle m \rangle) \frac{\partial g}{\partial \Delta \tau} = \frac{\varepsilon}{2c_0^2} \left\{ m \int_0^m g(x; \Delta \tau, m_2) \times g(x; 0, m - m_2) dm_2 - (m - \langle m \rangle) g \int_0^\infty g(x; 0, m_2) dm_2 \right\}$$
(7)

Рассмотрим здесь одно точное решение (7), отвечающее входному пуассоновскому процессу:

$$g(x; \Delta \tau, m) = \frac{1}{\tau_0} e^{-\frac{\tau}{\tau_0}} \frac{1}{m_0} \sqrt{\frac{x_p}{x}} \frac{m_0}{m} \times \exp\left[-\frac{m}{m_0} \left(1 + \frac{x}{x_p}\right)\right] I_1\left(2\frac{m}{m_0} \sqrt{\frac{x}{x_p}}\right) = g(\tau) \cdot g_0(x, m).$$
(8)

Здесь $x_p = c_0^2 \tau_0 / \epsilon m_0$ — среднее расстояние, на котором «схлопывается» реализация случайного процесса (8); I_1 — функция Бесселя мнимого аргумента.

Используя (8), проанализируем эволюцию спектра интенсивности случайной последовательности стационарных ударных волн — решений уравнения Бюргерса вида

$$u_i = u_{0i} + \frac{m_i}{2} \operatorname{th} \left(\frac{\varepsilon c_0 \rho_0}{2b} m_i \left(\tau - \tau_i \right) \right).$$
(9)

Здесь τ_i , m_i — момент возникновения и высота *i*-го ударного фронта; u_{0i} — скорость его движения в сопровождающей системе координат. Если число Рейнольдса $\Gamma^{-1} \gg 1$, ширина фронтов мала по сравнению с расстоянием между ними, из последовательности ступенек (9) можно сформировать реализацию по типу изображенной на рис. 1 и ее эволюция будет происходить по тем же законам.

Усредняя обычным образом фурье-образ (9) с помощью распределения (8), приходим к выражению для спектра интенсивности в области $\omega \neq 0$:

$$G(\omega) = 2\pi^3 m_0^2 \tau_0 \Gamma^2 \int_0^\infty \frac{g_0(x, m) dm}{\operatorname{sh}^2 \left(\pi \omega \tau_0 \frac{m_0}{m} \Gamma\right)}.$$
(10)

Рассмотрим изменение формы спектра интенсивности (10) с расстоянием в случаях регулярного распределения ступенек по высоте $g_0(x, m) = \delta(m - \langle m \rangle)$ и экспоненциального (8). Анализ выражения (10) показывает, что в спектре $G(\omega)$ можно выделить два характерных участка. При $\omega \ll \Omega_* = (\pi \tau_0 \Gamma m_0 / \langle m \rangle)^{-1}$ спектральная плотность $G(\omega) \sim \omega^{-2}$ и не зависит от Γ как для регулярной, так и для случайной волны (рис. 2) — низкочастотная (НЧ) асимптотика. Эта зависимость является универсальной и характеризует присутствие крутых участков фронта в реализации процесса.

При высоких частотах ω≫Ω. (высокочастотная (ВЧ) асимптотика) поведение спектра регулярной и случайной воли имеет существенные

68

отличия. В первом случае $G(\omega) \sim \Gamma^2 \exp(-2\pi\omega\tau_0\Gamma)$ — убывает по экспоненциальному закону, во втором

$$G(\omega) \approx 4\pi^3 m_0^2 \tau_0 \left(\frac{x_{\rm p}}{x}\right)^{3/4} \Gamma^2 \left(2\pi\omega\Gamma\tau_0\right)^{-1/2} \exp\left[-2\sqrt{2\pi\omega\Gamma\tau_0}\left(1-\sqrt{x/x_{\rm p}}\right)\right] - \frac{1}{2\pi\omega\Gamma\tau_0} \left(1-\sqrt{x/x_{\rm p}}\right) - \frac{1}{2\pi\omega\Gamma\tau_0$$

убывает пропорционально ~ $\Gamma^2 \exp(-\gamma \gamma \omega) / \gamma \omega$. Более медленное уменьшение $G(\omega)$ при $\omega \rightarrow \infty$ для случайных волн объясняется влиянием разрывов большой амплитуды, спектр которых убывает вплоть до очень высоких частот.

Из рис. 2 видно, как с увеличением пройденного волной расстояния $x/x_{\rm b}$ происходит увеличение значения спектральной плотности, более медленный ее спад с ростом частоты. НЧ- и ВЧ-асимптотики определялись соответственно в диапазонах $\omega < 0,25\Omega_*,$ $\Omega_* = (\pi \Gamma \tau_0 (1 -$ $(-x/x_p))^{-1}$ и $\omega > 4\Omega_*$ и построены в различных масштабах. Полагалось $\Gamma = 0.05$, среднее (m) в регулярной волне выбиралось равным среднему значению амплитуды перепада в случайной последовательности (8) $(m) = m_0/(1 - x/x_p)$. В результате слияния разрывов высота ступенек увеличивается и, как следует из (9), фронты становятся более крутыми, спектр убывает медленнее. Происходит также увеличение характерной частоты Ω_{*}, разделяющей ВЧ- и НЧ-асимптотики, соответственно на рис. 2 мы сдвигали кривые вправо, так как область зависимости $G(\omega) \sim \omega^{-2}$ смещается в сторону более высоких частот.

СПИСОК ЛИТЕРАТУРЫ

[1] Руденко О. В.//УФН. 1986. 149, № 3. С. 413. [2] Гурбатов С. Н., Санчев А. И., Якушкин И. Г.//УФН. 1983. 141, № 3. С. 221. [3] Калоджеро Ф., Дегасперис А. Спектральные преобразования и солитоны. Методы решения и исследования нелинейных эволюционных уравнений. М., 1985.

Поступила в редакцию 21.04.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 4

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 548.4

РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ НА ПОВЕРХНОСТИ ДЕФОРМИРУЕМЫХ УЛЬТРАЗВУКОМ КРИСТАЛЛОВ ХЛОРИСТОГО НАТРИЯ ПО ДАННЫМ ТЕПЛОВИДЕНИЯ

Г. М. Зиненкова, Е. В. Пала, Н. А. Тяпунина, Н. П. Новиков, Ю. В. Жаркой

(кафедра молекулярной физики и физических измерений)

Проведено исследование in situ распределения температуры на поверхности образцов, деформируемых ультразвуком. Показано, что в обычных условиях область вблизи пучности напряжений нагревается не более чем на 10 К по отношению к комнатной температуре.

Известно, что под действием ультразвука может происходить пластическая деформация, которая сопровождается потерями механической энергии, приводящими к нагреванию образца. Поскольку с повышением температуры изменяются пластические свойства материалов, для

69