отличия. В первом случае $G(\omega) \sim \Gamma^2 \exp(-2\pi\omega\tau_0\Gamma)$ — убывает по экспоненциальному закону, во втором

$$G(\omega) \approx 4\pi^3 m_0^2 \tau_0 \left(\frac{x_{\rm p}}{x}\right)^{3/4} \Gamma^2 \left(2\pi\omega\Gamma\tau_0\right)^{-1/2} \exp\left[-2\sqrt{2\pi\omega\Gamma\tau_0}\left(1-\sqrt{x/x_{\rm p}}\right)\right] - \frac{1}{2\pi\omega\Gamma\tau_0} \left(1-\sqrt{x/x_{\rm p}}\right) - \frac{1}{2\pi\omega\Gamma\tau_0$$

убывает пропорционально ~ $\Gamma^2 \exp(-\gamma \gamma \omega) / \gamma \omega$. Более медленное уменьшение $G(\omega)$ при $\omega \rightarrow \infty$ для случайных волн объясняется влиянием разрывов большой амплитуды, спектр которых убывает вплоть до очень высоких частот.

Из рис. 2 видно, как с увеличением пройденного волной расстояния $x/x_{\rm b}$ происходит увеличение значения спектральной плотности, более медленный ее спад с ростом частоты. НЧ- и ВЧ-асимптотики определялись соответственно в диапазонах $\omega < 0,25\Omega_*,$ $\Omega_* = (\pi \Gamma \tau_0 (1 -$ $(-x/x_p))^{-1}$ и $\omega > 4\Omega_*$ и построены в различных масштабах. Полагалось $\Gamma = 0.05$, среднее (m) в регулярной волне выбиралось равным среднему значению амплитуды перепада в случайной последовательности (8) $(m) = m_0/(1 - x/x_p)$. В результате слияния разрывов высота ступенек увеличивается и, как следует из (9), фронты становятся более крутыми, спектр убывает медленнее. Происходит также увеличение характерной частоты Ω_{*}, разделяющей ВЧ- и НЧ-асимптотики, соответственно на рис. 2 мы сдвигали кривые вправо, так как область зависимости $G(\omega) \sim \omega^{-2}$ смещается в сторону более высоких частот.

СПИСОК ЛИТЕРАТУРЫ

[1] Руденко О. В.//УФН. 1986. 149, № 3. С. 413. [2] Гурбатов С. Н., Санчев А. И., Якушкин И. Г.//УФН. 1983. 141, № 3. С. 221. [3] Калоджеро Ф., Дегасперис А. Спектральные преобразования и солитоны. Методы решения и исследования нелинейных эволюционных уравнений. М., 1985.

Поступила в редакцию 21.04.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 4

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 548.4

РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ НА ПОВЕРХНОСТИ ДЕФОРМИРУЕМЫХ УЛЬТРАЗВУКОМ КРИСТАЛЛОВ ХЛОРИСТОГО НАТРИЯ ПО ДАННЫМ ТЕПЛОВИДЕНИЯ

Г. М. Зиненкова, Е. В. Пала, Н. А. Тяпунина, Н. П. Новиков, Ю. В. Жаркой

(кафедра молекулярной физики и физических измерений)

Проведено исследование in situ распределения температуры на поверхности образцов, деформируемых ультразвуком. Показано, что в обычных условиях область вблизи пучности напряжений нагревается не более чем на 10 К по отношению к комнатной температуре.

Известно, что под действием ультразвука может происходить пластическая деформация, которая сопровождается потерями механической энергии, приводящими к нагреванию образца. Поскольку с повышением температуры изменяются пластические свойства материалов, для

правильной интерпретации механизмов ультразвукового воздействия необходимо знать температуру и ее распределение по образцу.

Целью данной работы являлось исследование температурного поля на поверхности образцов NaCl в процессе их деформирования ультразвуком. Деформация осуществлялась методом составного пьезоэлектрического осциллятора в килогерцевом диапазоне частот [1, 2]. При таком способе нагружения в образце устанавливается продольная стоячая волна сжатия-растяжения и все изменения свойств, вызванные ультразвуком, коррелируют с распределением напряжений по длине образца [2—5]. Ранее измерения температуры проводили с помощью термопары, вводимой вблизи пучности напряжений [6, 7], что создавало дополнительные концентраторы напряжения в образце. В работе [8] для исследования температурного поля применяли холестерические жидкие кристаллы (ХЖК). Однако нанесение на поверхность образца слоя ХЖК существенно влияло на акустические характеристики составного осциллятора.

В настоящей работе для исследования in situ распределения температуры на поверхности деформируемого ультразвуком образца использован тепловизор AGA-750, позволяющий наблюдать за объектом в динамическом режиме [9]. Тепловое разрешение тепловизора на уровне 293 К составляет 0,2 К. Поскольку исследованные кристаллы NaCl прозрачны в инфракрасной области, на одну сторону образца наносили слой сажи, поглощательная способность которой близка к единице (0,95-0,97) [10]. Контрольные опыты показали, что зачернение сажей практически не меняло акустических свойств составного осциллятора. Образцы выкалывались по плоскостям спайности из одного и того же монокристалла и подвергались ультразвуковому воздействию с частотой f=73, 91 и 102 кГц в интервале амплитуд $\varepsilon_{max}^0=10^{-5}-4\cdot10^{-4}$. Испытания проводились на воздухе при комнатной температуре.

В начале эксперимента температура всего образца была комнатной и на экране тепловизора образец был неотличим от фона. При постепенном повышении амплитуды ультразвука у всех образцов начинала нагреваться область, расположенная вблизи пучности напряжений *. Центральная часть образца становилась более светлой и выделялась на экране тепловизора. Затем с помощью изотерм проводилось исследование распределения температуры по поверхности образца.

Порядок измерения температуры удобно рассмотреть на серии микрофотографий (рис. 1), снятых с экрана тепловизора. Светлые участки на снимках соответствуют областям кристалла, имеющим одинаковую температуру, Вольт-амперная характеристика, полученная при испытаниях этого же образца, приведена на рис. 2. При постепенном изменении напряжения $V_{\rm bx}$, подаваемого на обкладки кварца, выделяли область, которая находилась при самой высокой температуре, предварительно убедившись, что система «кварц—образец» находится в резонансе. Это был сплошной участок вблизи центра образца y = L/2, где L длина образца, у — координата вдоль L (см. рис. 1, a). Затем последовательно выделяли области, находящиеся при более низкой температуре. Почти во всех случаях эти области располагались вокруг центральной, более нагретой, о чем свидетельствовало то, что изотермы представляли собой замкнутые контуры, вытянутые вдоль длины образца (см. рис. 1, б-е). Температура вдоль ребер образца (см. рис. 1, е) практически совпадала с комнатной. Контроль последней осуществлялся по показаниям ртутного термометра. Разность температур ΔT опре-

* При возбуждении на основной гармонике пучность напряжений и деформаций в стоячей ультразвуковой волне приходится на середину длины образца [1, 3].

Рис. 1. Фотографии образца NaCl, полученные с экрана тепловизора с разными изотермами: f=102.4 кГц, $V_{\rm Ex}=70.5$ В, $e^0 {\rm max}=2.7\cdot 10^{-4}$, L=22 мм, $\Delta T=T(y)-T_{\rm KOME}=5$ (a); 3.8 (б), 3 (в) н ~0 К (г). Стрелкой указан свободный конец образца

Рис. 2. Вольт-амперная характеристика составного осциллятора, нагруженного образцом NaCl, f = = 102,4 кГц

Рис. 3. Распределение температуры по длине при сопах = образца $=1,4\cdot10^{-4}$ (1); 2,9.10⁻⁴ 3,1.10-4 (2) (3)чИ (L=31 мм). Заштрихована область образца, занятая полосами скольжения, сформировавшимися под действием ультразвука

делялась по положению светящихся рисок на шкале (см. рис. 1). Можно видеть, что для ситуации, приведенной на серии рис. 1, ΔT , например, между «краем» и центром (рис. 1, α и ϵ) составляет 5 K (цена деления шкалы 1 K).

Таким образом, вдоль L температура измерялась на конечных интервалах. Размер участков поверхности образца, имеющих одну и ту же температуру, менялся от 0,5 L в области упругих деформаций до 0,03 L при амплитудах ε^0 , больших амплитуд ε^0_f , при которых начиналась пластическая деформация. Подчеркнем, что температура фиксировалась изотермой в последовательные моменты времени. Так, серия фо-

тографий рис. 1, а--г получена с промежутком времени 1 мин. Экспозиция для каждого снимка составляла 1 с.

Пример распределения температуры вдоль образца по линии А-A' (см. рис. 1, a) представлен на рис. З для трех различных амплитуд относительной деформации є⁰_{тах}. Области, соответствующие одной изотерме, изображены горизонтальными линиями, нанесенными в масштабе образца на уровне данной температуры (ΔT). Отметим, что «перекрытие» некоторых изотерм, фиксирующих разную температуру на одном и том же участке образца (например, отмеченных стрелками на рис. 3), связано как раз с тем, что изотермы получены в разные моменты времени, а температура образца меняется в процессе испытаний. Здесь же на схеме образца штриховкой отмечена область (L_i-L_i), выявленная химическим избирательным травлением, в которой под действием ультразвука произошла пластическая деформация. Амплитуда є⁰ составила 2,7 · 10-4. Распределение температур, соответствующее кривой 1 на рис. 3, получено при амплитуде относительной деформации є⁰тах ниже динамического предела текучести. Кривые 2 и 3 рис. З описывают характерное распределение температур при $\varepsilon^{0}_{max} > \varepsilon^{0}_{f}$. Видно, что по мере увеличения є⁰ max растет и разность температур ΔT между областями вблизи пучности и узлов напряжений.

Заметное нагревание образца наблюдалось при таких амплитудах ($\varepsilon^{0}_{\max} \approx 1 \cdot 10^{-4}$), при которых в исследованных кристаллах NaCl под действием ультразвука начиналась перестройка дефектной структуры,

Рис. 4. Изменение температуры ΔT вблизи пучности стоячей ультразвуковой волны в зависимости от амплитуды деформации ε^0 max (a) и зависимость от времени $\Delta T(t)$ при $\varepsilon^0 = 3 \cdot 10^{-4}$ (б) о чем свидетельствовало изменение вольт-амперных характеринаклона стик [4] *. На вольт-амперной характеристике рис. 2 это участок BC. Во всех исследованных образцах до ам-2·10-4 разница плитуд температур между «краем» и центром образца не превышала 2 К. С повышением амплитуды внешнего воздействия величина ΔT немонотонно увеличивалась и достигала 10 К при амплитудах, превышающих динамический предел текучести.

Характерное изменение температуры вблизи пучности напряжения с ^{e0}max приведено увеличением на рис. 4, а. Разброс ΔT объясняется тем, что при последовательном повышении V_{вх} температура образца не сразу достигает некоторого макси-

мального значения; при данной амплитуде ультразвукового воздействия требуется определенное время для установления стационарного теплового режима. Так, время установления температуры при $\varepsilon^0 = -3 \cdot 10^{-4}$ составляет более 30 мин. График изменения температуры с течением времени приведен на рис. 4, б (ср. с соответствующими $\varepsilon^0 = 3 \cdot 10^{-4}$ точками на рис. 4, а).

Проведенное с помощью тепловизора исследование температурного поля на поверхности щелочно-галондных образцов NaCl при воздейст-

^{*} Оценка сверху и данные [[11] позволяют заключить, что возможное влияние термоупругих напряжений на процесс перестройки дефектной структуры не является определяющим.

вии ультразвука показало, что при частотах 10^5 Гц и амплитудах $\varepsilon^0 < < 4 \cdot 10^{-4}$ область вблизи пучности напряжений в процессе деформирования ультразвуком нагревается не более чем на 10 К по отношению к комнатной температуре.

Установлено, что разность температур между областями кристалла, прилегающими к пучностям и узлам напряжений, достигает 2—3 К в упругой области и 8—10 К при пластическом деформировании. Таким образом, повышение температуры не может существенно повлиять на изменение пластических свойств исследованных кристаллов.

СПИСОК ЛИТЕРАТУРЫ

Поступила в редакцию 28.03.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 4

УДК 592.315

ВЛИЯНИЕ ИНЖЕКЦИИ ЭЛЕКТРОНОВ ИЗ SI В SIO₂ НА ЭЛЕКТРИЧЕСКУЮ НЕСТАБИЛЬНОСТЬ МДП-СТРУКТУРЫ

Ю. Н. Касумов, С. Н. Козлов

(кафедра общей физики для химического факультета)

Исследована электрическая нестабильность кремниевых МДП-структур в зависимости от количества электронов, инжектированных из кремния в слой SiO₂. Инжекция электронов осуществлялась методом лавинного пробоя приповерхностной области кремния.

В процессе инжекции электронов из кремния в слой SiO₂ постепенно происходит инжекционная деградация структуры метал—диэлектрик—полупроводник (МДП-структуры), характерными признаками которой являются: 1) рост плотности быстрых электронных состояний на границе раздела Si—SiO₂; 2) накопление в окисной пленке сначала отрицательного, а затем положительного заряда (так называемый «эффект возврата»); 3) генерация медленных электронных состояний (МС), ответственных за долговременную электрическую нестабильность МДПструктур [1—3]. Пока не установлены достаточно точно условия возникновения МС, в частности зависимость темпа образования МС от количества инжектированных электронов, а также от температуры. Полностью отсутствует какая-либо информация о влиянии инжекции носителей заряда из кремния в окисел на электрическую нестабильность

6 ВМУ, № 4, физика, астрономия