Результат численного интегрирования (9) показан на рисунке вместе с результатами компьютерного расчета, в котором $B_x(\tau)$ вычислялась вдоль стохастической траектории за время $T=2\cdot10^4$. Погрешность в сохранении энергии ΔE не превышала $2\cdot10^{-3}$. Как видно, согласие является вполне удовлетворительным (особенно хорошо получается период осцилляций) и ухудшается с ростом τ , как и следовало ожидать. Заметим, что мы использовали простейшее решение (7*a*), уточнив которое улучшим и согласие.

СПИСОК ЛИТЕРАТУРЫ

[1] Заславский Г. М. Стохастичность динамических систем. М., 1984. [2] Шустер Г. Детерминированный хаос. Введение. М., 1988. [3] Напsel К. D.// //Chem. Phys. 1978. 33, N 1. P. 35. [4] Наmilton I., Carter D., Brumer P.// //J. Phys. Chem. 1982. 86, N 12. P. 2124. [5] Vivaldi F., Casati G., Guarneri I.//Phys. Rev. Lett. 1983. 51, N 9. P. 727. [6] Karney C. F. F.//Physica. 1983. D8, N 4. P. 360. [7] Бунимович Л. А.//ЖЭТФ. 1985. 89, № 4(10). С. 1452. [8] Pullen R. A., Edmonds A. R.//J. Phys. A. 1981. 14, N 12. P. L477. [9] Меуег Н.-D.//J. Chem. Phys. 1986. 84, N 6. P. 3147. [10] Воробьев П. А., Заславский Г. М.//ЖЭТФ. 1987. 92, № 5. С. 1564.

Поступила в редакцию 19.12.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 4

РАДИОФИЗИКА

УДК 535.416.3

СЛАБОКОРРЕЛИРУЮЩИЕ ПОЛИНОМЫ ДЛЯ ОПИСАНИЯ Атмосферных аберрации

К. В. Шишаков, В. И. Шмальгаузен

(кафедра общей физики и волновых процессов)

Получены полиномы, ортонормированные на кольцевых областях и дающие слабокоррелированные коэффициенты разложения атмосферных аберраций с учетом внешнего масштаба турбулентности. Проведено их сравнение с полиномами Цернике.

При анализе искажений волнового фронта, прошедшего через турбулентную атмосферу, часто применяют их представление в виде ряда разложения по некоторой ортонормированной системе функций. Наиболее удобным представлением является разложение Карунена—Лоева, в котором коэффициенты разложения представляют собой некоррелированные случайные величины [1]. К сожалению, для колмогоровской модели атмосферной турбулентности функции Карунена—Лоева не могут быть записаны в явном внде, а допускают только табличное задание [2]. Поэтому для описания атмосферных аберраций на круглых и кольцевых областях широко применяются различные круговые полиномы. Так, для круглых областей часто используют полиномы Цернике [2].

Целью настоящей работы является нахождение слабокоррелирующих круговых полиномов для описания атмосферных аберраций на кольцевых областях. При этом будет применяться разложение Карунена—Лоева для приближенио заданной фазовой структурной функции в виде степенного ряда.

Функции Карунена—Лоева G_i на кольцевой области Ω определяются через решение интегрального уравнения [2]:

$$G_{l}(\mathbf{r}) = K_{p}^{q}(r) e^{jq\theta}, \ \lambda_{pq}^{2} K_{p}^{q}(r) = \frac{1}{1-a^{2}} \int_{a}^{b} R_{q}(r, \rho) K_{p}^{q}(\rho) d\rho,$$

$$R_q(r, \rho) = -\left(\frac{r_0}{D}\right)^{5/3} \frac{r}{2\pi} \int_0^{2\pi} D_{\varphi}(|r^2 + \rho^2 - 2r\rho \cos q\theta|^{1/2}) d\theta, \quad q \neq 0,$$

7 ВМУ, № 4, физика, астрономия

(1)

где j — мнимая единица; $\mathbf{r} = (r, \theta)$ — полярные координаты; λ^2_{pq} — собственные значения; a^{-1} — отношение внешнего диаметра D области Ω к внутреннему; $R_q(r, \rho)$ — ядро уравнения (выражение для R_q при q=0 приведено в работе [2]); $D_{\varphi}(r)$ — структурная функция фазы [3]:

$$D_{\varphi}(r) = 2.6k^2 c_n^2 z \int_0^{\infty} \frac{1 - J_0 (Dr\kappa)}{(\kappa^2 + (2\pi/L_0)^2)^{11/6}} \kappa \, d\kappa, \quad r \in (0, 1),$$
(2)

 L_0 — внешний масштаб турбулентности; k — волновое число; z — длина трассы; c_n^2 — структурная постоянная показателя преломления; J_0 — функция Бесселя нулевого порядка; r_0 — раднус корреляции Фрида, $1.68(c_n^2 z k^2)^{-3}/5 = r_0$.

Для нахождения слабокоррелирующих функций воспользуемся следующим приближением фазовой структурной функции:

$$D'_{\mathbf{p}}(r) = \left(\frac{D}{r_{\mathbf{0}}}\right)^{5/3} \sum_{i=1}^{M} a_i r^{2i}, \quad M = 4,$$
(3)

позволяющим нелосредственно вычислить все интегралы, входящие в (1). Здесь M — количество членов разложения; a_i — коэффициенты, определяемые из условия минимизации квадратичной ошибки аппроксимации функции D_{φ} функцией D_{φ}' на круге единичного раднуса. При $2\pi D/L_0 = \alpha \leq 1$ отношение такой ошибки к среднему по области значению квадрата функции (2) заключалось в интервале $2 \cdot 10^{-5} - 3 \cdot 10^{-4}$, а при $\alpha > 1$ быстро росло. Решением уравнений (1) для D_{φ}' являются круговые полиномы мы вида

$$G_1 = \text{const}, \quad G_i = \sum_{k=1}^{4} C_{ki} r^{m+2k} e^{im\theta}, \quad i = 2, \dots, 10,$$
 (4)

где m — целое число; C_{ki} — постоянные коэффициенты, зависящие от a и a.

$(\mathbf{z} \stackrel{G_i}{=} 0)$	m	а	<i>C</i> ₁₁	C _{2i}	C _{3i}	C ₄₁	۸ _i
2,3	1	0,5 0,75	2,010 1,771	-0,448 -0,307	0,234 0,171	0,074 0,068	0,452 0,456
4	0	0,5		11,642	—8,949	3,288	0,0078
5,6	2	0,5 0,75	4,457 4,018	-4,273 -3,948	1,451 1,451		0,028 0,029
7,8	1	0,5	9,310		8,169	0,202	0,0046
9,10	3	0,5 0,75	4,660 4,057	$-2,801 \\ -2,511$			0,0086 0,0100

В таблице приведены некоторые из полиномов G_i, удовлетворяющие условню нормировки:

$$\frac{1}{\pi D^2 (1-a^2)} \int_{\Omega} G_i^2(\mathbf{r}) d^2 \mathbf{r} = 1.$$

Величины Λ_i равны отношению значений λ_i^2 к квадратичной ошибке волнового фронта (с) [2], вычисленной для $D_{\varphi'}$. На рис. 1 показаны функции $\widetilde{K}_p^q(r) = K_p^q(r) = -K_p^q(a) - (K_p^q(1)) - K_p^q(a))r/(1-a)$, в которых K_p^q определяются в соответствии с таблицей. Зависимости дисперсий коэффициентов разложения b_i искажений волнового фронта по полиномам G_i от величины a приведены на рис. 2. Отметим, что для круглой области $\Omega(a=0)$ функции G_i оказались очень близки к функциям Карунена—Лоева [2].

Рис. 1. Функции $\tilde{K}_{\rho}^{q}(r)$ при a=0,5 (сплошные кривые) и $-\tilde{K}_{\rho}^{q}(r)$ при a=0,75 (штриховые). Номера кривых i соответствуют функциям $G_{i}(r) = -K_{\rho}^{q}(r)e^{iq\theta}$

Проведем сравнение полученных полиномов с полиномами Цернике [4]. Чтобы сохранить ортогональность полиномов Цернике на кольцевой области и среднее по области нулевое значение, преобразуем их следующим образом [4]:

$$Z'_{4} = Z_{4} - V \tilde{3} a^{2}, \quad Z'_{7,8} = Z_{7,8} - \frac{2 V 8 a^{4}}{1 + a^{2}} r e^{j\theta}, \quad Z'_{i} = Z_{i}, \quad i = 2, 3, 5, 6, 9, 10.$$
(5)

Для сравнения таких полиномов с полученными ранее (4) были вычислены δ_{kl} — отношения величин $\langle b_k b_l \rangle$ для полиномов (4) к аналогичным величинам для полиномов (5). Вычисления проводились в соответствии с формулами работы [2]. Без учета внешнего масштаба турбулентности (α =0) для структурной функции (2) величины δ_{kk} получились близкими, а корреляции между 2-м и 8-м (3-м и 7-м) полиномами существенно уменьшились и составили для a=0: δ_{37} — δ_{28} = —0,09. Отношения остаточной ошибки аппроксимации волнового фронта полиномами Z_i' (i=2,...,10) к такой же ошибке для полиномов G_i были равны 1,11 (a=0); 1,09 (a=0,5). Подобные отношения были вычислены при α =1 для структурной функции (3). В этом случае на круглой области (a=0) такое же отношение было равно примерно трем. В заключение отметим, что основным недостатком полиномов Цернике является сильная корреляция 2-го с 8-м и 3-го с 7-м, причем $\langle b_2 b_8 \rangle$ превышает при α =0 более чем в два раза вклад $\langle b_8^2 \rangle$ 7-го или 8-го полиномов в ошибку волнового фронта. Полиномы (4) такую связь существенно ослабляют. Так, для них при α =0 она оказывается примерно в три (a=0) и в четыре (a=0,5) раза меньше вклада 7-го или 8-го полинома в были вача слова слова существенно в слова в слова слова

Таким образом, полиномы, полученные на основе аппроксимации (3), выгодно отличаются от полиномов Цернике меньшей коррелированностью на круглых и кольцевых областях.

СПИСОК ЛИТЕРАТУРЫ

[1] Корн Г., Корн Т. Справочник по математике. М., 1977. [2] Wang J., Markey J.//J. Opt. Soc. Am. 1978. 68, N 1. Р. 78. [3] Татарский В. И. Распространение волн в турбулентной атмосфере. М., 1967. [4] Wang J. Y., Silva D. E.// //Appl. Opt. 1980. 19, N 9. P. 1510.

. Поступила в редакцию 01.11.88