АКУСТИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

-УДК 534.26

О ВЫБОРЕ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ СФЕРИЧЕСКОЙ ЛИНЗЫ

Н. Н. Макарченко, Ф. В. Рожин, О. С. Тонаканов

(кафедра акустики)

С использованием точного решения задачи дифракции на жидкой сферической линзе исследованы поля звукового давления и интенсивности во внутренней области линзы с $20 \ll kr_0 \ll 80$ в зависимости от показателя преломления, затухания и отношения волновых сопротивлений материалов линзы и среды.

Для формирования диаграмм направленности в жидкой и газообразной средах используются фокусирующие системы, например сферическая линзовая антенна. Для анализа ее характеристик в промежуточном частотном диапазоне (когда размер препятствия порядка нескольких десятков длин волн) необходимо использовать точное решение соответствующей дифракционной задачи. С использованием решения в виде разложения поля по сферическим функциям в работах [1—4] были исследованы распределения звукового давления при различных параметрах задачи. В данной работе исследуется вопрос об оптимальных параметрах жидкой сферической линзы.

При падении на однородный шар радиуса r_0 , расположенный в центре сферической системы координат (r, θ, φ) , плоской звуковой волны давления единичной амплитуды $p_i = \exp(ikz)$ вдоль оси 0z в предположении временной зависимости $\exp(-i\omega t)$ поле во внешней области

$$\rho = \rho_i + \sum_{n=0}^{\infty} i^n (2n+1) A_n h_n (kr) P_n (\cos \theta),$$

во внутренней области

$$\overline{\rho} = \sum_{n=0}^{\infty} i^n (2n+1) \overline{A_n j_n}(kr) P_n(\cos \theta),$$

«составляющие относительной (нормированной по отношению к скорости падающей волны) колебательной скорости во внутренней области

$$\tilde{v}_r/v_i = -(\partial \bar{p}/\partial r) (\rho c/i\omega \bar{\rho}) = (i/R_c) \sum_{n=0}^{\infty} \tilde{A}_n \tilde{j}_n'(\bar{k}r) P_n(\cos \theta),$$
$$\tilde{v}_{\theta}/v_i = -(\partial \bar{p}/\partial \theta) (\rho c/i\omega \bar{\rho}r) = (i/R_c \bar{k}r) \sum_{n=0}^{\infty} \bar{A}_n \bar{j}_n(\bar{k}r) (dP_n/d\theta).$$

Относительная интенсивность звука (модуль вектора относительной интенсивности) в любой точке внутри линзы [2]

$$\bar{I} = (\bar{I}_r^2 + \bar{I}_{\theta}^2)^{1/2}$$

32

 $I_r = \operatorname{Re}(\bar{p}\bar{v}_r^*)/2I_i, \quad I_{\theta} = \operatorname{Re}(\bar{p}\bar{v}_{\theta}^*)/2I_i,$ $I_i = (1/2)\rho c,$

причем $I_{\theta} = 0$ для точек на оси линзы ($\theta = 0, \pi$), так как $dP_n(\cos\theta)/d\theta = 0$ при $\theta = 0, \pi$.

Обозначения: $j_n(x)$ — сферические функции Бесселя, $h_n(x)$ сферические функции Ханкеля первого рода, штрих означает производную по соответствующему аргументу, * — знак комплексного сопряжения, $P_n(\cos \theta)$ — полиномы Лежандра, A_n , \bar{A}_n — коэффициенты разложения, определяемые из граничных условий непрерывности нормальных составляющих скоростей и давлений на границе, $x = kr_0$, $k = \omega/c$, $\bar{k} = \omega/\bar{c}$; $\bar{k} = \bar{k}_1 + i\bar{k}_2$ считаем в общем случае комплексным, учитывая тем самым поглощение в материале линзы, $R_c = \rho \bar{c}/\rho c$, ρ , \bar{c} , ρ , c — плотности и скорости звука во внутренней и внешней жидкостях соответственно.

Решение, а следовательно, и характеристики линзы зависят от следующих параметров: kr_0 — волнового числа линзы; $N_c = \bar{k}/k$ — комплексного показателя преломления; R_c — отношения волновых сопротивлений материала сферы и среды; kr, $\bar{k}r$, θ — координат точки, в которой рассматривается поле. N_c и R_c — комплексные при $\bar{k}_2 \neq 0$: $N_c = = N + i\alpha/2\pi$, $R_c = R(1 + i\alpha/2\pi N)$, где $N = \bar{k}_1/k = \lambda/\bar{\lambda}$ характеризует отношение длины волны в среде λ и в материале линзы $\bar{\lambda} = 2\pi/\bar{k}_1$; $\alpha = = 2\pi \bar{k}_2/k$ [Hn] — поглощение на расстоянии, равном λ ; $R = \rho N/\rho (N^2 + +\alpha^2/4\pi^2)$.

Исследуемый диапазон изменения параметров:

 $20 \ll kr_0 \ll 80, 1 \ll N \ll 2, 0 \ll \alpha \ll 1, \alpha - B \ \text{gB}/\lambda, 0 \ll \rho/\rho \ll 10, r \ll 2r_0,$

 $0 \leq \theta \leq \pi$.

Результаты расчетов. На рис. 1 приведены радиальные распределения относительной интенсивности I и звукового давления \bar{p} во внутренней области на оси (θ =0) для линз с указанными параметрами. На оси можно выделить фокальную область, в которой давление существенно больше давления в падающей волне и осциллирует. Распределения I более плавные, чем \bar{p} . Под положением фокуса будем понимать положение максимума огибающей кривой распределения давления (интенсивности). Фокусы I и \bar{p} не совпадают в общем случае, что согласуется с [1, 2]. При увеличении N фокальная область смещается к центру линзы.

Примеры резонансных и нерезонансных угловых распределений давления на поверхности линзы (диаграмм направленности точечного ненаправленного приемника, расположенного на ее поверхности) приведены в [4]. С ростом x (вне резонансов) полуширина главного лепестка диаграммы направленности ($\Delta_{0,7}$) сужается и уменьшается отношение амплитуды главного лепестка к максимальному из боковых (δ) (рис. 2), что согласуется с [5]. Расчеты показывают, что $\Delta_{0,7}$, δ и положение фокуса r_f/r_0 существенно не меняются при увеличении затухания по крайней мере до 0,6 дБ/ λ .

В [5] указывается на существование значения x, при котором коэффициент усиления для давления K (отношение давления в фокусе линзы к давлению в падающей волне) достигает максимума. Это связано с тем, что с ростом x, с одной стороны, растет апертура линзы, а с другой — возрастает фазовая аберрация, влияние этих факторов на K

где

Рис. 1. Распределения интенсивности и звукового давления внутри линзы на оси $(\theta=0): x=50, \ \overline{k_2}r_0=0,2, \ \rho/\rho=1$ (1), 2 (2), 3 (3) при N=1,8 (сплошная линия) и 2 (штриховая)

Рис. 2. Зависимости $\Delta_{0,7}$ и б от *х* для линз с $\rho = \rho$, $\alpha = 0.54$ дБ/ λ : N = 1.8 (1) и 1.7 (2)

Рис. 3. Зависимости звукового давления в точке на оси ($\theta = = 0$) от x для линзы с $\alpha = = 0,1$ дБ/ λ (1), 0,15 дБ/ λ (2), 0,3 дБ/ λ (3); R = 1; N = 1,8; $r = r_0$ противоположно. Для линзы с N=1,7~K должен достигать максимума при $x \approx 30$, как следует из анализа характеристик методом Дебая [5].

Проведенный нами анализ зависимостей давления в точках фокальной области от x показывает, что в отсутствие затухания имеются существенные осцилляции давления на фоне среднего уровня, связанные с резонансами. На рис. 3 цифрами 1, 2, 3 обозначены области, каждая из которых ограничена двумя кривыми, определяющими верхний и нижний уровни осцилляций давления на поверхности линзы (в фокальной области) при M = 1,8 и равенстве волновых сопротивлений среды и материала линзы.

Рис. 4. Завысимости интенсивности и звукового давления на оси $(\theta=0)$ от R($\overline{\rho}/\rho$) для линзы с $k_2 r_0 = 0.2$, N = 1.8 (сплошная линия): x = 30, $r_f = 0.84 r_0$ (1); x = 50, $r_f = 0.9 r_0$ (2); x = 70, $r_f = 0.95 r_0$ (3) и N = 2 (штриховая линия): x = 30, $r_f = 0.7 r_0$ (1); x = 50, $r_f = 0.75 r_0$ (2); x = 70, $r_f = 0.77 r_0$ (3)

Амплитуда этих осцилляций и средний уровень давления уменьшаются с ростом затухания. Средний уровень давления для N = 1,7 и 1,8 монотонно растет с ростом x, и максимума при $x \approx 30$ нет. Таким образом, точное решение дает результаты, отличающиеся от данных, полученных с использованием приближенного метода Дебая (в принципе не описывающего резонансы линзы).

Наряду со случаем $\alpha = \text{const}$ (затухание линейно растет с частотой) исследовались зависимости давления от *x* для затухания, растущего как квадрат частоты ($\alpha = 0, 1x/20$ дБ/ λ). Для этого случая *K* имеет максимум при $30 \ll 80$.

Относительно выбора оптимального N отметим, что K для линзы с N=2 не меньше, чем с N=1,8, но фокус для N=1,8 расположен ближе к поверхности линзы, что предпочтительнее для практического использования.

Представляет интерес вопрос о выборе оптимального значения *R*. Как известно [6], при нормальном падении плоской волны на плоскую границу двух полупространств *R*_{опт}=1, при этом интенсивность падающей волны равна интенсивности прошедшей. В предельных случаях при $R \rightarrow \infty$ $\bar{p} \rightarrow 2$, $\bar{v} \rightarrow 0$, $\bar{I} \rightarrow 0$, а при $R \rightarrow 0$ $\bar{p} \rightarrow 0$, $\bar{v} \rightarrow 2$, $\bar{I} \rightarrow 0$. При наклонном падении R_{onr} зависит от угла падения θ и N. R_{onr} растет от 1 до ∞ при изменении θ от 0 до 90°. Так как при достаточно больших x можно говорить о лучах, падающих на сферу под различными углами 0° $< < \theta < 90^{\circ}$, то результат $R_{onr} = 1$ (как предполагается в [5]) не является очевидным.

Примеры зависимостей I и \bar{p} в фокусе давления от R для линзы приведены на рис. 4. Для всех кривых $\bar{k}_2 r_0 = 0,2$, что соответствует постоянному затуханию на диаметре линзы. Видно, что с ростом R (за счет $\bar{\rho}/\rho$) \tilde{p} монотонно растет и стремится при $R \to \infty$ к некоторому предельному значению \bar{p}_{∞} , а I достигает максимума при $R \sim 1-2$ (в зависимости от x и N). Вне резонансов колебательная скорость стремится к нулю при $R \to \infty$. Это следует из решения

$$\begin{aligned} A_n \Big|_{R_c \to \infty} &= \frac{i n \bar{l}_n' - R_c l'_n \bar{l}_n}{R_c h'_n \bar{l}_n - h_n \bar{l}_n'} \Big|_{R_c \to \infty} = -\frac{i'_n}{h'_n}, \\ \bar{A}_n \Big|_{R_c \to \infty} &= \frac{i R_c}{x^2 (R_c h'_n \bar{l}_n - h_n \bar{l}_n')} \Big|_{R_c \to \infty} = \frac{i}{x^2 \bar{l}_n h'_n}. \end{aligned}$$

где аргументом функций j_n , j_n' , h_n , h_n' является kr_0 , а \bar{j}_n , $\bar{j}_n' - \bar{k}r_0$,

$$\begin{split} \vec{p} |_{R_{c} \to \infty} &= \sum_{n=0}^{\infty} \frac{i^{n+1} (2n+1) \vec{j}_{n} (\vec{k}r)}{x^{2} h_{n}^{'} (kr_{0}) \vec{j}_{n} (\vec{k}r_{0})} P_{n} (\cos \theta) = \vec{p}_{\infty}, \\ \frac{\vec{v}_{r}}{v_{i}} \Big|_{R_{c} \to \infty} &= \frac{1}{R_{c} x^{2}} \sum_{n=0}^{\infty} \frac{i^{n+2} (2n+1) \vec{j}_{n}^{'} (\vec{k}r)}{h_{n}^{'} (kr_{0}) \vec{j}_{n} (\vec{k}r_{0})} P_{n} (\cos \theta) \Big|_{R_{c} \to \infty} = 0. \end{split}$$

Поле во внешней области при $R \to \infty$ вне резонансов совпадает с полем рассеяния акустически жесткой сферы, вблизи резонансов $\bar{p} \sim O(R)$ и $\bar{v}/v_i \sim O(1)$ [7, 8].

СПИСОК ЛИТЕРАТУРЫ

[1] Boyles C. A.//J. Acoust. Soc. Am. 1965. 37, N 3. P. 393. [2] Boyles C. A.// //Ibid. 1977. 61, N 2. P. 338. [3] Макарченко Н. Н., Рожин Ф. В., Тонаканов О. С.//Вестн. Моск. ун-та. Физ. Астрон. 1980. 21, № 6. С. 97. [4] Макарченко Н. Н., Рожин Ф. В., Тонаканов О. С.//Там же. 1981. 22, № 4. С. 89. [5] Каневский И. Н. Фокусировка звуковых и ультразвуковых волн. М., 1977. С. 227-267. [6] Ржевкин С. Н. Курс лекций по теории звука. М., 1960. [7] Gaunard G. C., Tanglis E., Überall H., Brill D.//Nuovo Cim. 1983. **B76**, N 2. P. 153. [8] Kriegsmann G. A., Norris A. N., Reiss E. L.//Wave Motion. 1984. 6, N 5. P. 501.

Поступила в редакцию 02.06.88