ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 5

УДК 548.5:539.12

СТРУКТУРА И МАГНИТНЫЕ ХАРАКТЕРИСТИКИ АМОРФНЫХ СПЛАВОВ (Co, Fe, Ni) -- (Si, B) ПРИ НАГРЕВЕ

В. Е. Роде, В. Н. Прудников, Н. А. Хатанова, Ф. Мартинес (Куба)

(кафедра физики твердого тела)

Рентгеновский анализ и измерения намагниченности насыщения *I*, позволили определить составы фаз, кристаллизующихся при нагреве до 800 °C. Дано объяснение температурной зависимости *I*, в сплавах на основе кобальта, аморфных в исходном состоянии.

Аморфные сплавы на основе кобальта имеют большое практическое применение как магнитно-мягкие материалы. Однако магнитные свойства могут резко ухудшиться при нагреве аморфных сплавов не только за счет их кристаллизации, но и из-за релаксационных процессов, приводящих к изменению ближнего порядка в аморфной фазе [1, 2]. Имеющиеся в литературе работы [3-5], посвященные изучению кристаллизации аморфных сплавов Со-Fe-Si-B и ее влияния на магнитные свойства, не дают однозначного ответа о кристаллизующихся в процессе нагрева фазах, а сопоставление результатов затруднено из-за отсутствия в них данных рентгеновского анализа.

В настоящей работе проведено изучение температурной зависимости намагниченности насыщения I_s в сплавах на основе кобальта и дано объяснение хода этих кривых с использованием данных рентгеновского анализа.

Исследованные аморфные сплавы в виде фольги были получены закалкой из жидкого состояния по традиционной методике и имели следующие составы в весовых процентах:

I. Co_{83,8}Fe_{5,7}Si_{7,9}B_{2,6},

II. $Co_{71,67}Fe_{5,7}Ni_{11,9}Si_{8,23}B_{2,5}$,

III. Co_{57,5}Fe₅Ni₁₀Si₁₁B_{16,5}.

Намагниченность насыщения I_s измерялась в атмосфере аргона в поле 10 кЭ со скоростью нагрева 5,3 град/мин в интервале от 20 до 800° С и скоростью охлаждения 20 град/мин. Отжиг образцов при 350° С проводился в вакууме 10⁻⁴ мм рт. ст. Кроме того, две партии образцов для каждого сплава были нагреты в магнитной установке в отсутствие поля соответственно до температур 540 и 800° С с указанными выше скоростями нагрева и охлаждения до комнатной температуры. Все отожженные образцы были подвергнуты рентгеновскому анализу, который проводился фотометодом в камере РКСО на монохроматизированном излучении Мо.

Рентгеновский анализ показал, что все сплавы в исходном состоянии были «рентгеновски» аморфными. Микрофотометрирование фона рентгенограмм до первого диффузного гало не выявило ни на одной из них наличия «препика», что указывало на отсутствие в аморфных сплавах каких-либо кластеров размерами больше 6—8 Å [6].

На рисунке приведены температурные зависимости намагниченности насыщения I_s для трех исследованных сплавов: I (a), II (б) и III (в). Видно, что при комнатной температуре для всех сплавов l_s в аморфных состояниях (I_s^a) различны и больше по величине, чем соответствующие значения в кристаллических состояниях I_s^{κ} (табл. 1), т. е. $I_s^a/I_s^{\kappa} > 1$.

Отжиг всех сплавов в течение 5 ч при 350°С по рентгеновским данным не привел к кристаллизации. Как видно из рисунка, характер хода кривых Is при нагреве до 500° С примерно одинаков для всех

Температурные зависимости намагниченности насыщения I_s для сплавов: I (a). II (6) и III (6). Штриховые кривые соответствуют: a: $1 - (\alpha$ -Co, Si)-B, $2 - Fe_2B$; 6: $I - (\alpha$ -Co+ ε -Co), $2 - (Fe, Co)_3Si$, $3 - (Fe, Ni)_2B$

сплавов. Для сплавов I и II выше 500° С начинается кристаллизация ферромагнитных фаз (см. рисунок, а, б), и, следовательно, в области температур 400-500° С эти сплавы находятся в аморфном парамаг-

таолица г

Сплав	<i>I</i> ^a _s , Гс.см ⁸ /г	I_{S}^{K} , $\Gamma c \cdot c M^{3}/\Gamma$	I ^b _s /I ^K _s
I	67,5	60	1,12
II	57	50	1,13
III	70,5	63	1,27

нитном состоянии, т. е. магнит-

ный фазовый переход предшествует структурному.

идентификации Для кристаллических фаз большое значение имеет кривая Іs, полученная для полностью закристаллизованного сплава при охлаждении от 800° С до комнатной температуры, на которой четко

выявляются точки перегибов, соответствующие резкому изменению Is. Условно будем называть их точками Кюри Tc^{эксп}. На рисунке, а на кривой охлаждения видны четыре точки перегиба — кружочки (табл. 2).

+64

Наши экспериментальные значения $T_c^{\operatorname{аксп}}$ в основном близки к T_c указанных фаз, приведенных в работе [7]. Некоторое отличие естественно и связано с тем, что кристаллизующиеся из аморфного сплава фазы не имеют строго стехиометрических составов, а являются твердыми растворами на основе кристаллических соединений, указанных в 3-й колонке табл. 2. В 4-й колонке приведены предполагае-

Таблица 2

<i>т_С</i> эксп , ℃	T _C , ℃ [7]	Кристаллические фазы	Примерный состав кристаллических фаз
200 310 600 740	160 474 554 742 1115	Co ₂ B Co ₃ B Fe ₃ B Fe ₂ B a-Co	(Co, Fe) ₂ B (Co, Si) ₂ B (Fe, Co) ₃ B Fe ₂ B (α -Co, Si)-B

мые составы кристаллизующихся фаз, найденные на основе сравнения $T_{C^{\partial K C \Pi}}$ и T_{C} [[7]. Проведенный после нагревов до 540 и 800° С рентгеновский анализ подтвердил кристаллизацию всех перечисленных в табл. 2 кристаллических фаз и, кроме того, выявил образование при 540° С парамагнитной фазы (Со, Fe)₂Si, присутствие которой не может быть обнаружено магнитным методом.

Используя данные рентгеновского анализа — межплоскостные расстояния $d^{3\kappa_{CR}}$ — и магнитные характеристики, можно получить более полную информацию о примерных составах фаз. Так, после нагревов до 540 и 800°С на рентгенограммах сплава I (табл. 3) четко видны линии метастабильного ГЦК а-Со. Но а-Со имеет $T_c=1115^{\circ}$ С, в то время как кривая нагрева на рисунке, а показывает, что для полностью закристаллизованного сплава I $T_c=740^{\circ}$ С, откуда следует, что мы имеем дело с кристаллизацией твердого раствора на основе а-Со с замещением атомов Со атомами Si и внедрением атомов B, что и приводит к резкому снижению значения T_c .

Интересно отметить, что, хотя фазы Co_2B и Fe_2B изоморфны имеют близкие параметры, они не образуют между собой твердых растворов с одной точкой Кюри, а кристаллизуются независимо другот друга со своими значениями T_c . Нагрев до 800°C приводит к дополнительной кристаллизации фаз со сложными решетками.

Рассмотрим теперь на рисунке, а кривую нагрева, из которой видно, что кристаллизация ферромагнитных фаз начинается выше 500° С. Из данных рентгеновского анализа следует, что после нагрева до 540° С кристаллизуются две ферромагнитные фазы — (a-Co, Si)—В и Fe₂B с T_C =740° С — и одна парамагнитная фаза (Co, Fe)₂B с T_C = =200° С, а после нагрева до 800° С кристаллизуются только парамагнитные фазы: (Co, Si)₃B, Co₂Si и (Fe, Co)₃B. Поэтому кривую нагрева I_s выше 500° С следует разложить на две составляющие, которые на рисунке, а качественно изображены пунктиром.

На рисунке, δ для сплава II на кривой охлаждения от 800° C выявляются пять точек перегиба (табл. 4).

Результаты рентгеновского анализа приведены в табл. 5. При нагреве до 800° С обнаружено присутствие ГПУ є-Со. Это хорошо коррелирует с ходом кривой I_s при нагреве. Существенное отличие кривых нагрева на рисунке, *а* и *б* состоит в том, что при нагревании выше 700° С кривая в последнем случае не доходит до нуля и выше

65

				-			
		540° C			80	0° C	
Цела		Табличные значения с	1 [8]	LUNN	L	абличные значения d [3]
erane.	8-C	FegB	Co _s B	a ancie	FegB	Co ₃ B	Co ₂ S1
2,54(20)*		2,56(20)	2,50(100)	2,48(20)	2,52(100)	2,39(80)	2,75(70)
2,30(20)		2,12(30)	2,10(100)	2,25(20)	2,35(60)	2,26(70) 2,13(50)	
2,04(100)	2,04(100)	2,01(100)	1,97(100)	2,04(100)	2,06(100)	2,05(100) 1,98(100) 1,94(100)	2,05(100) 2,00(100) 1,97(100)
1,80(40)	1,77(44)	1,83(10)	1,87(80) 1,77(80)	1,80(60)	1,73(100)	1,86(60) 1,73(60)	1,87(100)
1,61(20)		1,63(10)		1,60(40)	1,59(100)	1,68(70)	1,71(100)
				1,37(20)	1,40(100) 1,37(100)	1,37(70)	
1,25(20)	1,25(22)		1,26(40)	1,23(80)		1,26(70)	
		1,20(10) 1,19(10)	1,19(100)	1,19(20)		1,17(80)	
1,14(20)			1,17(100)	1,11(20)			1,11(100)
1,07(20)	1,06(22)		1,08(40)		1		

* В скобках приведены относительные интенсивности дебаевских линий.

66

1

ż

	2,50(100) 2,56(20)	2,50(100) 2,56(20) 0) 2,10(80) 2,12(30)	2,50(100) 2,56(20) 0) 2,10(80) 2,12(30) 00) 1,97(100) 2,01(100)	2,50(100) 2,56(20) 0) 2,10(80) 2,12(30) 00) 1,97(100) 2,01(100)	2,50(100) 2,56(20) 0) 2,10(80) 2,12(30) 00) 1,97(100) 2,01(100) 1,81(80) 1,83(10) 1,77(80) 1,83(10)	2,50(100) 2,56(20) 2,50(100) 2,56(20) 0) 2,10(80) 2,12(30) 00) 1,97(100) 2,01(100) 1,81(80) 1,83(10) 1,77(80) 1,63(10) 1,63(10) 1,63(10)	2,50(100) 2,56(20) 0) 2,10(80) 2,12(30) 00) 1,97(100) 2,01(100) 1,81(80) 1,83(10) 1,77(80) 1,63(10) 1,63(10) 1,63(10)	2,50(100) 2,56(20) 0) 2,10(80) 2,12(30) 00) 1,97(100) 2,01(100) 1,97(100) 1,81(80) 1,83(10) 1,77(80) 1,63(10) 0) 1,50(10)
	2,50	2,18(80) 2,10	2,50 2,18(80) 2,10 1,92(100) 1,97	2,50 2,18(80) 2,10 1,92(100) 1,97	2,50 2,50 2,18(80) 2,10 1,97 1,81 1,81	2,18(80) 2,50 2,18(80) 2,10 1,92(100) 1,97	2,50 2,18(80) 2,10 1,92(100) 1,97 1,77	2,50 2,18(80) 2,10 1,92(100) 1,97 1,77 1,77
	2,35(20)	2,35(20) 2,19(20) 2	2,35(20) 2,19(20) 2, 2,05(100) 1	2,35(20) 2,19(20) 2, 2,05(100) 1	2,35(20) 2,19(20) 2, 2,05(100) 1, 1,79(80)	2,35(20) 2,19(20) 2, 2,05(100) 1, 1,79(80) 1,60(20)	2,35(20) 2,19(20) 2, 2,05(100) 1, 1,79(80) 1,79(80) 1,60(20) 1,38(20)	2,35(20) 2,19(20) 2, 2,05(100) 1, 1,79(80) 1,79(80) 1,38(20) 1,38(20) 1,26(20) 1
-	2,39(80) 2,26(70) 2	2,39(80) 2 2,26(70) 2 2,13(50) 2	2,39(80) 2 2,26(70) 2 2,13(50) 2 1,98(100) 1 1,94(100) 2	2,39(80) 2,26(70) 2,13(50) 2,13(50) 1,98(100) 1,94(100) 1,94(100) 1,86(60)	2,39(80) 2,26(70) 2,13(50) 1,98(100) 1,94(100) 1,94(100) 1,86(60) 1,73(60) 1,73(60) 1	2, 39(80) 2, 26(70) 2, 13(50) 2, 05(100) 1, 94(100) 1, 94(10)	2, 39(80) 2, 26(70) 2, 13(50) 2, 13(50) 1, 94(100) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	2,35(60) 2,	2,35(60) 2, 2, 35(60) 2, 2,	2, 35(60) 2, , 2, 2, 2, 06(100) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2, 35(60) 2, 2, 2, 2, 2, 06(100) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2, 35(60) 2, 2, 2, 2, 06(100) 1, 1, 1, 1, 1, 1, 1, 73(100) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	2,35(60) 2, 2,35(60) 2, 2,06(100) 1, 1,73(100) 1, 1,73(100) 1,	2, 35(60) 2, 2, 35(60) 2, 2, 2, 06(100) 1, 1, 1, 73(100) 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	$\begin{array}{c c} 2, 35(60) & 2, \\ 2, 35(60) & 2, \\ 2, 06(100) & 1, \\ 1, 73(100) & 1, \\ 1, 37(100) & 1, \\ 1, 37(100) & 1, \\ 1, 23(80) & 1 \\ \end{array}$
			2,05(100) 2,01(100) 1,97(100) 2,0	2,65(100) 2,05(100) 1,97(100) 1,87(100) 2,1	2,5 2,05(100) 1,97(100) 1,87(100) 1,87(100) 1,71(100) 1,1,71(100)	2,65(100) 2,05(100) 1,97(100) 1,87(100) 1,71(100) 1,71(100) 1,1,1	2,05(100) 2,05(100) 1,97(100) 1,87(100) 1,87(100) 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1 1,1,1,1	2,65(100) 2,05(100) 1,97(100) 1,87(100) 1,71(100) 1,1,1 1,1 1,1
			1,99(100) 2	1,99(100)	1,70(100) 1,70(100) 1	1,99(100) 1,99(100) 1,1,70(100) 1,1,62(20)	1,99(100) 1,1,99(100) 1,1,70(100) 1,41(100) 1,41(100)	1,99(100) 2, 1,99(100) 1, 1, 1,70(100) 1 1,41(100) 1
			2,04(100)	2,04(100)	2,04(100) 1 1,77(44) 1	2,04(100) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,04(100) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2,04(100) 1 1,77(44) 1 1,25(22) 1
	20)	(20)	(20)	(20) 2 (100) 2 (20)	(20) (100) 2 (20) 1 (20) 1	(20) (100) 2 (20) 1 (20) 1	(20) (100) 2 (20) 1 (20) 1 (20) 1	(20) ((100) 2 ((20) 1 ((20) 1 ((20) 1 ((20) 1

5*

÷

67

,

]									I		ļ
аблица 7	FeaSi	3,25(40)	2, 83(40)	1,99(100)	1,70(40)	1,62(20)	1,41(100)			1,14(100)		
L .	Co ₂ B	3,53(80)	2,50(100)	2,10(80) 1,97(100)	1, 81(80) 1, 77(80)				1,19(100) 1,17(100)			
80	S.			2,04(100)	$\left[\begin{array}{c} 1,77(44)\\ 1,78(80) \end{array} \right]$			1,25(22)			1,06(22)	
	а ^э ксп	3,48(10)	2,52(40)	2,01(100)	1,78(80)	1,59(80)	1,38(40)	1,25(40)	1,17(40)	1,10(70)	1,06(20)	
	Co21S12B6	2,36(70) 9.15(70)			1,87(70)	1,76(70)	1,59(10)	1,32(40)	-1,28(70) 1,24(30) 1,24(30)	(~ .) Tan i t		
, ,	Co ₃ B	2,39(80) 2,96(70)	2,13(50)	2,05(100) 1,98(100) 1,94(100)	1,86(60)	1,73(60)	1,68(70)	1,37(70)	1,26(70)		1,1/(00)	102/01 1
540	- - ප			2,04(100)		1,77(44)			1,25(22)			1 06/001
-	фэксп	9 35(10)		2,01(100)	1,89(10)	1,79(20)	1,60(10)	1,35(10)	1,29(20)		102)111	

Таблица 4

T ^{3KCII} , ℃	т _с , °С [7]	Кристаллические фазы	Примерный состав кристаллических фаз
160 280 500 600 710	160 474 554 550 742 1115	$\begin{array}{c} Co_2B\\ Co_3B\\ Fe_3B\\ Fe_3Si\\ Fe_2B\\ \alpha\text{-}Co\end{array}$	$\begin{array}{c} Co_{2}B\\ (Co, Si)_{2}B\\ (Fe, Ni)_{2}B\\ (Fe, Co)_{3} Si\\ (Fe, Ni)_{2}B\\ \alpha\text{-}Co + e\text{-}Co\end{array}$

710° С сплав имеет намагниченность насыщения $I_s=2$ Гс·см³/г, которая не изменяется вплоть до 800° С. Это объясняется $\alpha \rightarrow \varepsilon$ полиморфным превращением в кобальте, у которого ε -ГПУ модификация всегда ферромагнитна. В соответствии с этим наблюдающиеся на кривой нагрева (рисунок, б) выше 500° С два максимума представляют собой уже результат наложения трех кривых от фаз: α -Со+ ε -Со, (Fe, Co)₃Si и (Fe, Co)₂B.

И наконец, на рисунке, в показана температурная зависимость Is для сплава III. На кривой охлаждения хорошо видны четыре точки перегиба (табл. 6). Все эти фазы кристаллизуются выше 500°С уже

Таблица б

<i>Т^{эксп},</i> °С	T _C , ℃ [7]	Кристаллические фазы	Примерный состав кристаллических фаз
100	160	$\begin{array}{c} Co_2B\\ Co_{21}Si_2B_6\\ Co_3B\\ \alpha\text{-}Co_3F\\ \alpha\text{-}Co_5; Fe_3Si\end{array}$	(Co, Fe, Ni)2B
250	238		(Co, Fe, Ni)21Si2Bg
400	474		(Co, Fe, Ni)3B
730	1115; 550		(α-Co, Si)B; (Fe, Co, Ni)3Si

в парамагнитных состояниях. Твердый раствор на основе α -Со в начале кристаллизации сильно обогащен атомами Si и B и по мере нагрева до 800° C и охлаждения до 730° C концентрация компонентов достигает таких значений, которые соответствуют T_c =730° C. Результаты рентгеновского анализа, приведенные в табл. 7, подтверждают кристаллизацию фаз, приведенных в табл. 6.

Таким образом, сочетание рентгеновского и магнитного методов позволяет определить примерные составы образующихся при нагреве кристаллических фаз и дать объяснение температурной зависимости I_s .

СПИСОК ЛИТЕРАТУРЫ

[1] Vank C. А.//J. Аррі. Cryst. 1976. 9. Р. 433. [2] Глезер А. А., Потапов А. П., Серников В. В. и др.//ФММ. 1979. 48. С. 1165. [3] Власова Е. Н., Мотовилов Б. В.//ДАН СССР. 1979. 249. С. 1112. [4] Ганжула Н. Н., Некрасов А. А., Перекос А. Е. и др.//Металлофизика. 1984. 6. С. 49. [5] Борисов В. И., Ефимов Т. В., Золкина С. В.//Металлофизика. 1983. 5. С. 30. [6] Жданов Г. С., Камзеева Е. Е., Хатанова Н. А.//Кристаллография. 1984. 20. С. 570. [7] Тикадзуми С. Физика ферромагнетизма. М., 1983. [8] Inorganic Index to the Powder Diffraction File 1969/Publ. by the American Society for Testing and Materials. York (Pensylvania), 1969.

> Поступила в редакцию 30.06.88