УДК 539.172:519.95

О ДИАЛОГОВОМ ПОДХОДЕ К РЕШЕНИЮ ЗАДАЧИ АНАЛИЗА И ИНТЕРПРЕТАЦИИ МЕССБАУЭРОВСКОГО СПЕКТРА

А. А. Козлов, В. И. Николаев, Ю. П. Пытьев, В. С. Русаков, А. Ю. Селина

(кафедра физики атмосферы и математической геофизики; кафедра общей физики для физического факультета)

На примере мёссбауэровского фазового анализа одного из образцов литиевой шпинели продемонстрированы принципиально новые возможности и преимущества диалогового подхода, который обеспечивает целенаправленность и оперативность в решении задачи анализа и интерпретации экспериментальных данных.

Решение задачи анализа и интерпретации экспериментальных данных в мёссбауэровской спектроскопии по существу сводится к максимальному сужению класса априорных гипотез о природе сверхтонких взаимодействий в изучаемом веществе, об условиях опыта и параметрах спектра. Эта проблема может быть успешно решена только при выполнении определенных критериев, контролирующих надежность используемой информации и точность представления результатов измерений в удобном для интерпретации виде, который может быть получен, например, в рамках развитых в работах [1-4] методов редукции измеренного спектра 5 к «идеальному» спектру Uf. Учет в модели измерений дополнительной информации об объекте исследования всегда ведет к повышению качества редукции. Источником дополнительной информации могут быть измерения, полученные в других экспериментах, а также знания исследователя. В рамках методов редукции неформализованная информация об изучаемом объекте может быть включена в систему обработки данных. При этом гипотезы о структуре мёссбауэровского спектра представляются в виде дополнительных измерений и соответствующих им моделей.

Рассмотрим схему независимых измерений вектора f:

$$= \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_k \end{pmatrix} = \begin{pmatrix} A_1 \\ \vdots \\ A_k \end{pmatrix} f + \begin{pmatrix} v_1 \\ \vdots \\ v_k \end{pmatrix}$$
(1)

и соответствующую модель

$$\widehat{M}_{k} = \begin{bmatrix} \widehat{A}_{1} \\ \vdots \\ A_{k} \end{bmatrix}, \quad \widehat{\Sigma} = \begin{pmatrix} \Sigma_{1} & 0 \\ \vdots \\ 0 & \Sigma_{k} \end{pmatrix} \end{bmatrix}, \quad (2)$$

где результаты измерений $\xi_i \in \widetilde{\mathcal{R}}_i$ (dim $\widetilde{\mathcal{R}}_i = n_i$), $A_i \in (\mathcal{R} \to \widetilde{\mathcal{R}}_i)$ —известные линейные операторы, $v_i \in \widetilde{\mathcal{R}}_i$ —случайные элементы с нулевыми математическими ожиданиями ($Ev_i = 0$) и корреляционными операторами $\Sigma_i \in (\widetilde{\mathcal{R}}_i \to \widetilde{\mathcal{R}}_i)$, $\Sigma_i > 0$ (i = 1, 2, ..., k). Вектор f будем считать фиксированным неизвестным элементом пространства \mathcal{R} . Тогда вектор $\widehat{\xi}_k \in \bigoplus_{i=1}^k \widetilde{\mathcal{R}}_i$, оператор $\widehat{\mathcal{A}} \in (\mathcal{R} \to \bigoplus_{i=1}^k \widetilde{\mathcal{R}}_i)$ и $\widehat{\Sigma} \in (\bigoplus_{i=1}^k \widetilde{\mathcal{R}}_i \to \bigoplus_{i=1}^k \widetilde{\mathcal{R}}_i)$. (Здесь и далее \mathcal{R}, \mathcal{U} ,

 $\tilde{\mathcal{R}}_i, i=1, 2, ..., k$ —евклидовы пространства, $\bigoplus_{i=1}^k \tilde{\mathcal{R}}_i$ —прямая сумма пространств $\tilde{\mathcal{R}}_i, i=1, 2, ..., k$.) Справедлива

Теорема [1]. Для любого оператора $U \in (\mathcal{R} \to \mathcal{U})$, удовлетворяющего условию $U(I - \hat{A}^{-} \hat{A}) = 0$, задача редукции

$$\inf \{E \mid |R'\hat{\xi}_k - Uf \mid|^2 | R' \in (\bigoplus_{i=1}^k \mathcal{R}_i \to \mathcal{U}), \ R'\hat{A} = U\} = H(\hat{M}_k)$$
(3)

разрешима. Ее единственное решение — оператор $R_k = U(\widehat{\Sigma}^{-1/2}\widehat{A})^- \Sigma^{-1/2}$, а результат редукции имеет вид $R_k \widehat{\xi}_k = U(\widehat{\Sigma}^{-1/2}\widehat{A})^- \widehat{\Sigma}^{-1/2} \widehat{\xi}_k$. Погрешность (или качество) редукции определяется равенством

$$H(\widehat{M}_{k}) = || U(\widehat{\Sigma}^{-1/2}\widehat{A})^{-} ||_{2}^{2}.$$
(4)

Следствие. Если схема измерений имеет вид

$$\widehat{\xi}_{2} = \begin{pmatrix} \xi \\ f_{0} \end{pmatrix} = \begin{pmatrix} A \\ I \end{pmatrix} f + \begin{pmatrix} v \\ v' \end{pmatrix}$$
(5)

и задана ее модель

$$\widehat{M}_{2} = \left[\left(\begin{array}{c} A \\ I \end{array} \right), \quad \left(\begin{array}{c} \Sigma & 0 \\ 0 & F \end{array} \right) \right]. \tag{6}$$

где $\Sigma > 0$ и F > 0, то для любого оператора $U \Subset (\mathcal{R} \to \mathcal{U})$ задача (3) разрешима, причем редукция $\hat{\xi}_2$ к Uf имеет вид $\eta = UFA^*S^{-1}(\xi - Af_0) + Uf_0$, а качество редукции определяется равенством $H(\hat{M}_2) = ||UF^{1/2}(I - T)^{1/2}||_2^2$, где $T = F^{1/2}A^*S^{-1}AF^{1/2}$, $S = AFA^* + \Sigma$.

В схеме (5) измерения мёссбауэровского спектра f вектор f_0 интерпретируется как реализация случайного элемента с математическим ожиданием $Ef_0=f$, т. е. f_0 является в данном случае версией истинного спектра поглотителя f.

Определим надежность модели \hat{M}_k схемы измерений (1). Предположим, что v_i , i=1, 2, ..., k, — случайные векторы, контролируемые нормальными распределениями $\mathcal{N}(0, \Sigma_i), \Sigma_i > 0, i=1, 2, ..., k$, и пусть rank $\hat{A} < n_1 + ... + n_k = \dim \bigoplus_{i=1}^k \tilde{R}_i$. Тогда статистика

$$t(\widehat{\xi}_k) = ||Q_m \widehat{\Sigma}^{-1/2} \widehat{\xi}_k||^2,$$

 $(7)_{*}$

где $Q_m = I - \hat{\Sigma}^{-1/2} \widehat{A} (\hat{\Sigma}^{-1/2} \widehat{A})^-$, распределена по закону Пирсона χ_m^2 с $m = n_1 + \ldots + n_k$ —гапк \widehat{A} степенями свободы. В частности, для модели \widehat{M}_2 (6) схемы измерений (5) $t(\hat{\xi}_2) = ||S^{-l_k}(\xi - Af_0)||^2$. Будем считать, что в модели \widehat{M}_k (2) сомнение вызывает корреляционный оператор $\hat{\Sigma}$. Тогда в основу критерия, устанавливающего соответствие между моделью \widehat{M}_k и измерением $\hat{\xi}_k$ (1), положим гипотезу о распределении статистики $t(\hat{\xi}_k)$ (7) по закону χ_m^2 . Назовем надежностью модели \widehat{M}_k схемы измерений (1) величину

$$\alpha(t(\widehat{\xi}_{k}), \ \widehat{M}_{k}) = \inf \{P(\overline{X}_{\gamma}) | \{\overline{X}_{\gamma}\}, \ t(\widehat{\xi}_{k}) \in \overline{X}_{\gamma}\},$$
(8)

где $P(\cdot)$ — распределение χ_m^2 , а множество $\bar{X}_{\tau} = [0, \infty) \setminus X_{\tau}$ представ-

ляет собой критическое множество уровня γ∈ [0, 1], определяемое согласно равенству

$$\mu(X_{\gamma}) = \inf\{\mu(X) \mid X \in \mathcal{F}, \ P(X) = \gamma\}.$$
(9)

В (9) $\mu(\cdot)$ — мера Лебега, заданная на \mathcal{F} — σ -алгебре борелевских множеств на числовой прямой \mathcal{R}_1 . Таким образом, надежностью модели \hat{M}_k называется минимальная вероятность ошибочно отвергнуть гипотезу о распределении статистики $t(\hat{\xi}_k)$.

Оптимальной организацией решения задачи анализа и интерпретации экспериментальных данных является режим диалога с ЭВМ, в процессе которого осуществляется определенная последовательность преобразований измерений с целью выбрать наиболее достоверную модель регистрации мёссбауэровского спектра и получить наиболее точные значения параметров спектра.

Пусть задана модель $M_1 = [A, \Sigma]$, в которой не используется априорная информация о спектре f, и решена задача редукции измерений ξ к Uf в рамках этой модели. Результат обработки — «спектр» R₁ξ позволяет получить или дополнить уже имеющуюся информацию о спектре f и, формализовав ее в виде дополнительных измерений fo спектра f с соответствующими погрешностями v', перейти к схеме измерений (5) и модели \hat{M}_2 (6). Высокое качество редукции $H(\hat{M}_2)$ (4) и значение надежности $\alpha(t(\xi_2), \hat{M}_2)$ (8), близкое к единице, свидетельствуют о достоверности выбранной модели. В противном случае необходимо дальнейшее уточнение модели \hat{M}_2 , чему опять способствует анализ результата редукции $R_2\hat{\xi}_2$, и либо дополнение модели и переход к схеме измерения (1) при k=3, либо замена версии f_0 в схеме измерений (5) и модели M₂. Таким образом, совокупность величин позволяет организовать диалог, целью которого является решение задачи оценивания спектра Uf (в рамках задачи редукции) с заданной точностью и надежностью на основе дополнительной информации. Подчеркнем, что необходимость в дополнительной информации возникает только после того, как будет получен и проанализирован результат обработки. Имея результат обработки в графической форме, можно высказаться о наличии или отсутствии «пиков», об участках плавного поведения графика и т. д. Как правило, такая информация не может быть формализована без результатов обработки. Данные обработки позволяют формализовать предположения о поведении того или иного участка графика изучаемой зависимости и представить их в виде дополнительных измерений с соответствующими погрешностями, определяющими степень неопределенности в предположениях. Объединяя новые «измерения» с исходными данными, получаем новую схему измерений вида (1) и соответствующую модель (2).

Ниже рассмотрен фрагмент диалога при решении задачи мёссбауэровского фазового анализа одного из образцов литиевой шпинели (температура Кюри $T_c=943$ К) в парамагнитной области температур (T=953 К).

Предварительный рентгеноструктурный анализ показал наличие примеси в исследуемом образце. Относительно слабые дифракционные максимумы в области углов $2\theta \sim 30^\circ$ и $\sim 33^\circ$ соответствуют γ -Fe₂O₃ (рис. 1), два других принадлежат основной фазе Li_{0.5}Fe_{2.5}O₄ (они несколько искажены слабыми отражениями от γ -Fe₂O₃). Ввиду относительного малого содержания γ -Fe₂O₃ в образце идентификация этого лобочного продукта синтеза феррита по данным о сверхтонкой структуре мёссбауэровского спектра ξ (рис. 2, α) представляет собой весьма непростую задачу. В соответствии с особенностями строения литиевой шпинели $\operatorname{Fe}^{3+}[\operatorname{Li}_{0,5}+\operatorname{Fe}_{1,5}^{3+}]O_4$ ее спектр при $T > T_c$ можно рассматривать как суперпозицию двух квадрупольных дублетов — от ядер железа, занимающих тетраэдрические (A) и октаэдрические (B) позиции в структуре, причем более интенсивный дублет (B-подрешетка) имеет несколько больший изомерный сдвиг δ [5—6]. Что касается вкраиле-

ний фазы ү-Fe₃O₃, их структура, как и характер мёссбауэровского спектра, весьма близка по своим особенностям к структуре шпинели. Сам по себе вопрос о возможности ү-Fe₂O₃ в существования фазы матрице литиевой шпинели при высоких температурах представляет и самостоятельный физический интерес: чтобы обеспечить существование фазы γ -Fe₂O₃ при $T > T_C$, для Li0.5Fe2.5O4 нужны стабилизирующие факторы [7], в роли которых, повидимому, и выступает матрица литиевой шпинели.

Рассмотрим четыре этапа диалога с ЭВМ, в основе которого лежит формализм метода редукции спектра ξ в рамках модели \hat{M}_2 к показаниям «идеального» прибора U.

Схема измерений мёссбауэровского спектра поглощения f «тонкого» образца имеет вид

$$\xi(v_i) = (Af)(v_i) + v(v_i) = \int_{-\infty}^{\infty} w(v_i - u) f(u) du + v(v_i),$$

где $w(v_i-u)$ — лоренцевская линия источника излучения ⁵⁷Со в Сг (ширина аппаратной функции $\Gamma_A=0,15$ мм/с) с максимумом в точке $v_i=\Delta \cdot i$ ($i=1, \ldots, n$) на шкале доплеровских скоростей, $\Delta =$ =0,02 мм/с — шаг по шкале скоростей. В качестве «идеального» спектрометра U выберем прибор, описываемый равенствами

$$(Uf)(v_i) = \frac{1}{\Delta} \int_{v_i - \Delta/2}^{v_i + \Delta/2} f(u) \, du, \quad i = 1, \ldots, n.$$

Этот прибор обладает максимальной разрешающей способностью для данной дискретизации спектра ξ . Корреляционный оператор выберем так, чтобы стандартные отклонения компонент вектора f_0 были одина-ковыми по отношению к соответствующим компонентам вектора $f: F = \varphi^2 I$.

Вначале выберем версию спектра f такой, что $Uf_0 = N_{\infty}$ (N_{∞} — уровень счета γ -квантов при полной расстройке резонанса), а значение φ сравнимо с величиной эффекта в спектре ξ (см. рис. 2, *a*). Результат $R_2\hat{\xi}_2$, полученный в отсутствие каких бы то ни было предположений о структуре спектра f, указывает на наличие нескольких линий в центральной части и не противоречит сделанному выше предположению о том, что спектр f содержит два парциальных квадрупольных дублета. Выбранная модель, несмотря на ее примитивность, оказалась довольно «гибкой»: ее надежность составляет $\alpha = 0,60$. Однако величина средней погрешности $h = \sqrt{H/n} = 0,27 \cdot 10^6$ столь вели-

ка, что этот «спектр» $R_2\xi_2$ не дает еще оснований в качестве f_0 выбрать версию в виде суперпозиции двух квадрупольных дублетов.

Уменьшение «коридора» погрешностей ф на втором этапе диалога при сохранении всей остальной априорной информации (рис. 2, б)

дает возможность удостовериться в наличии по крайней мере четырех линий в центральной части спектра f. Вместе с тем очевидна необходимость радикального изменения версии f_0 : надежность модели упала практически до нуля при $h=0,12\cdot 10^6$. Версия f_0 в модели \hat{M}_2 на третьем этапе диалога соответствует модельным представлениям спектра поглощения в предположении наличия одной лишь фазы Li_{0,5}Fe_{2,5}O₄ в исследуемом веществе, т. е. двух квадрупольных дублетов в спектре f (рис. 2, β). При этом $\alpha = 0,672$, однако величина $h = 0,12 \cdot 10^6$ не дает еще возможности судить о том, насколько обоснованной является эта версия.

Четвертый этап диалога, на котором изменяется лишь «коридор» φ , позволяет признать несостоятельность выбранной версии: $\alpha = 0,015$ ($h = 0,043 \cdot 10^6$). Низкая надежность версии f_0 , соответствующей однофазности образца, свидетельствует о наличии примеси, что согласуется с данными рентгеноструктурных исследований.

СПИСОК ЛИТЕРАТУРЫ

[1] Пытьев Ю. П.//Матем. сб. 1982. 118 (160), № 1. С. 19. [2] Пытьев Ю. П.// //Матем. сб. 1983. 120 (162), № 2. С. 240. [3] Пытьев Ю. П.//Вестн. Моск. ун-та. Физ. Астрон. 1986. 27, № 3. С. 14. [4] Козлов А. А., Николаев В. И., Пытьев Ю. П. и др.//Тез. II Совещ. по ядерно-спектрометрическим исслед. сверхтонких взаимодействий. Грозный, 1987. С. 193. [5] Николаев В. И., Русаков В. С. Мёссбауэровские исследования ферритов. М., 1985. [6] Николаев В. И., Олейников Н. Н., Русаков В. С., Шипилин А. М.//Вестн. Моск. ун-та. Физ. Астрон. 1987. 28, № 1. С. 96. [7] Кудрявцева Г. П., Гаранин В. К., Жиляева В. А., Трухин В. И. Магнетизм и минералогия природных ферромагнетиков. М., 1982.

Поступила в редакцию 18.06.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1989. Т. 30, № 6

УДК 535.37.038.823

ВЛИЯНИЕ НАСЫЩЕНИЯ НА СТРУКТУРУ ПОЛЯ Суперлюминесценции в анизотропно усиливающей среде

Н. А. Домнина, В. В. Лебедева, А. И. Одинцов, Р. И. Соколовский

(кафедра оптики и спектроскопии)

Теоретически и экспериментально исследовано влияние насыщения усиления на оптические характеристики суперлюминесценции в сильноточном газовом разряде на линии NeI λ =614,3 нм. Качественные изменения в структуре поля объясняются различным темпом насыщения π -и σ -компонент излучения в анизотропно усиливающей среде.

Оптическая анизотропия сильноточных газовых разрядов, вызванная зеемановским расщеплением атомных уровней в магнитном поле разряда, может оказывать сильное влияние на пространственные и поляризационные характеристики суперлюминесценции (СЛ) на усиливающих переходах [1]. Формирование поля СЛ в такой среде в линейном режиме усиления анализировалось в работах [2, 3] на основе представления о модах анизотропного усиливающего канала (волновода). В настоящей работе теоретически и экспериментально исследуется влияние насыщения усиления на характеристики поля анизотропной СЛ. Показано, что в случае сильного насыщения происходят качественные изменения в структуре поля, обусловленные различным темпом насыщения π - и о-компонент излучения.

Эксперименты проводились на линии NeI с $\lambda = 614,3$ нм (переход $2p_6 - 1s_5$). Использовалась установка, аналогичная описанной в [3], с двумя разрядными трубками с внутренним диаметром 3 мм и длиной 20 см, одна из которых служила в качестве задающего генерато-