АКУСТИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

УДК 533.6

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ТЕЧЕНИЯ ЗА СФЕРИЧЕСКИМИ УДАРНЫМИ ВОЛНАМИ

А. М. Галкин, Д. А. Мазалов, Н. Н. Сысоев, Ф. В. Шугаев

(кафедра молекулярной физики и физических измерений)

Проведены систематические экспериментальные исследования поля течения газа: при фокусировании лазерного излучения на преграду в воздухе. Определены границы применимости теории точечного взрыва для описания газодинамических процессов ($\lambda \sim 0.7$ мкм).

Широкое использование в науке и технике лазерных импульсов с длительностью $t_0 \ll 10$ нс для обработки материалов, а также для создания плазмы и ударных волн требует детальной информации о газодинамических процессах, инициированных излучением вблизи твердой поглощающей преграды. Как правило, в экспериментальных работах изучается зависимость от времени t расстояния r, пройденного ударной волной в течение лазерного импульса в условиях, когда справедливы критерии сильного взрыва [1-4]. Однако весьма распространенный случай, когда необходимо учитывать противодавление газа перед фронтом ударной волны, остается малоисследованным.

Данная работа посвящена определению границ применимости теории точечного взрыва с учетом противодавления к газодинамическим процессам, инициированным излучением лазера с длиной волны $\lambda \sim 0.7$ мкм. В работе экспериментально определяются зависимости $\tau(\beta)$ и $\eta(\beta)$, где $\tau = tc_0/\alpha$; $\beta = r/\alpha$, $\eta = \rho/\rho_0$; $\alpha = \alpha(E^*, P_0)$; c_0 , ρ_0 , P_0 скорость звука, плотность и давление в невозмущенном газе, ρ плотность газа за фронтом ударной волны, E^* — эффективная энергия взрыва, α — параметр, имеющий размерность длины. Анализируется влияние плотности потока мощности лазерного излучения q на диапазон времени τ , в течение которого применима теория точечного взрыва.

Взрыв создавался внутри герметичной камеры на плоской и сферической поверхностях твердой преграды излучением лазера с $\lambda = -6943$ Å, $t_0 \simeq 20$ нс, $q \simeq 10^8 \div 10^{11}$ Вт/см² и энергией $E \simeq 0,01 \div 1$ Дж. Диаметр пятна фокусировки изменялся в диапазоне $100 \div 500$ мкм. Излучение направлялось по нормали к плоской поверхности преграды. Эксперименты проводились в воздухе при начальном давлении $P_0 \simeq 0,1 \div 1$ атм. Материалом для преграды служили графит, сталь и медь. Рабочая камера, снабженная оптическими окнами, помещалась в одном из плеч интерферометра Маха-Цендера. Для подсветки использовался моноимпульсный лазер ($t_0 \simeq 20$ нс). Фоторегистрация щелевых разверток самосвечения плазмы проводилась одновременно двумя приборами ЖФР вдоль оси лазерного луча и вдоль поверхности плоской преграды.

Координаты поверхностей разрывов и границ неоднородностей определялись с точностью ±0,1 мм. Плотность газа за фронтом ударной волны находилась из интерферограмм с помощью обращенного интеграла Абеля с относительной ошибкой около 20%.

Эксперименты показывают, что при фокусировке лазерного излучения в пятно диаметром менее 500 мкм фронт ударной волны для $t > t_0$ принимает полусферическую форму (рис. 1). В расчетах [5], выполненных по теории точечного взрыва для сферического случая, значение а равно $\alpha_c = (E_c^*/P_0)^{1/3}$ (далее все параметры, относящиеся

к сферическому случаю, помечены индексом «с», к цилиндрическому — «ц»).

Обозначим через r₁ расстояние от центра пятна фокусировки до ударной волны по нормали к плоской поверхности преграды, r₂ —

45

соответствующее расстояние вдоль поверхности. На рис. 2 представлена зависимость $\tau(\beta)$ для ударной волны, инициированной лазерным излучением. Данные 1—9 относятся к точечному взрыву в случае сферической симметрии ($\tau_c = tc_0/a_c$, $\beta_c = r_1/a_c$). Кривыми 8, 9 обозначены результаты численных расчетов точечного взрыва в воздухе [5], причем кривая 8 соответствует фронту ударной волны, а кривая 9 — границе воздуха за ударной волной с безразмерной плотностью $\eta \simeq 0.5$. Экспериментальные зависимости 1—3 получены с помощью фоторазверток самосвечения плазмы, а 4—7 — с помощью интерферограмм.

Хорощее согласие экспериментальных зависимостей 4-7 с расчетом наблюдается при $E_c^* \simeq 0.5 E$ (Дж) для $c_0 = 340$ м/с при $t \geq$ \geqslant 0,07 $a_{\rm c}/c_0$. Ударную волну при этих значениях t уже нельзя считать сильной. Экспериментальные зависимости 1-3, построенные для эф-фективной энергии взрыва $E_c^* \simeq 0,5 E$, удовлетворительно согласуются расчетом при $t \ge 0,003$ a_c/c_0 для $q \simeq 10^8 \div 10^9$ Вт/см² C И при t≥0,02 α_c/c₀ для q~10¹⁰÷10¹¹ Вт/см². Начиная с некоторого значения eta_{c} зависимости 1—3 описывают движение границы высоконагретой области с безразмерной плотностью п²⁰,5, а не ударной волны. Это объясняется тем, что граница высоконагретой области газа, которая регистрируется на фоторазвертке, совпадает с фронтом ударной волны лишь до тех пор, пока волна ионизует газ. Отрыв фронта ударной волны от границы высоконагретой области происходит при $t \simeq 0.03 \, a_{\rm c}/c_0$, что для исследуемых параметров излучения соответствует $t \sim 0, 1 \div$ ± 1 мкс. Скорость границы высоконагретой области с $\eta^{\simeq}0,5$ приближается к нулю при $r \simeq 0.4 \, \alpha_c$, что неплохо согласуется с расчетом [5].

На поздних стадиях течения происходит трансформация неоднородной области газа из полусферической в сферическую (рис. 1, г, ∂ , e).

Восстановленные из интерферограмм профили плотности газа за ударной волной удовлетворительно согласуются с теорией точечного взрыва по крайней мере при $t \ge 0,07 \alpha_c/c_0$ (рис. 3). Сплошной кривой на рис. 3 обозначен расчет [5], символами — экспериментальные данные. Расхождения между расчетом и экспериментом вблизи центра взрыва объясняются его неточечностью.

В диапазоне $\tau_c < 0.02$ и $q^{\simeq} 10^{10} \div 10^{11}$ Вт/см² радиус β_c растет со временем значительно быстрее, чем это следует из теории точечного взрыва. Форма фронта ударной волны при этом сильно отличается от сферической (рис. 4). По-видимому, ускорение ударной волны в канале лазерного луча (см. рис. 4) вызвано появлением волны поглощения во время импульса. Подвод энергии к фронту ударной волны, распространяющейся вне канала лазерного луча, практически отсутствует с момента возникновения волны поглощения. Скорость волны поглощения и ударной волны в канале луча в течение лазерного импульса значительно превосходит скорость других участков фронта. Это позволяет считать ударную волну вне канала луча при $t \sim t_0$ цилиндрической. Сравним ее движение с расчетом по теории точечного взрыва в цилиндрическом случае ($a_{\mu} = (E_{\mu}^*/P_0)^{\frac{1}{2}}$) [4].

На рис. 2 кривыми 10-12 представлена зависимость временн $\tau_{\rm u} = tc_0/\alpha_{\rm u}$ от радиуса фронта ударной волны $\beta_{\rm u} = r_2/\alpha_{\rm u}$. Сплошной кривой 12 на графике изображены результаты расчетов [4]. Символами показаны экспериментальные значения для $q \ge 10^{10}$ Вт/см², найденные по фоторазверткам процесса. Зависимость 10 получена при использовании медной преграды, 11 — стальной. Экспериментальные значения удовлетворительно согласуются с расчетными при $E_{\rm u} \approx 50$ Е Дж/м для $t \le 0.05$ ($E_{\rm u}^*/P_0$) hc_0^{-1} . Анализ фоторазверток самосвечения плазмы показывает, что за время $t \sim t_0$ при $E \sim 0,1$ Дж волна поглощения проходит вдоль канала лазерного луча расстояние порядка 1 мм. Следовательно, величина

Рис. 3. Плотность газа за фронтом ударной волны в зависимости от нараметра β_c : $a - \tau_c \simeq 0.2113$, $\alpha_c \simeq 6.9 \cdot 10^{-3}$ м; $6 - \tau_c \simeq 0.5707$, $\alpha_c \simeq 4.3 \cdot 10^{-3}$ м; $e - \tau_c \simeq 0.7702$, $\alpha_c \simeq 4.3 \cdot 10^{-3}$ м

Рис. 4. Теневые фотографии ударной волны в воздухе (Ро≃0,5 атм): а — q ≤ ≤ 10¹⁰ Вт/см², б — q ≥ 10¹⁰ Вт/см². Стрелкой указано направление лазерного луча

Рис. 5. Зависимость изменения формы фронта ударной волны от плотности потока мощности

энергии в E_{μ}^* при $q^{\simeq}10^{10} \div 10^{11}$ Вт/см² составляет $5 \div 10\%$ от полной энергии излучения лазера в импульсе, а в волне поглощения остается примерно 90% от полной энергии *E*. Последнее значение хорошо согла-

суется с величиной доли энергии, поглощаемой волной световой детонации при оптическом пробое воздуха [6].

Таким образом, присутствие твердой поглощающей преграды снижает на порядок при $\lambda = 0,6943$ мкм пороговое значение плотности потока мощности излучения, необходимое для развнтия газодинамических процессов, аналогичных явлению оптического пробоя.

Величина $K = (r_1 - r_2)/r_2$ характеризует отклонение формы ударной волны от сферической за счет влияния волны поглощения. Зависимость K от плотности потока мощности излучения q дана на рис. 5. Она построена для момента времени t=0,5 мкс ($P_0 \simeq 1$ атм). При K=0(q≤10⁸ Вт/см²) волна сферическая (волна поглощения отсутствует). При q>10^β Вт/см² фронт ударной волны начинает вытягиваться навстречу лазерному лучу, что говорит о появлении волны поглощения лазерного излучения. Однако значительное возрастание величины К наблюдается лишь для $q \ge q_{\pi} \simeq 2 \cdot 10^{10}$ Вт/см². Волна при $q \ge q_{\pi}$ поглощает излучение так же эффективно, как при оптическом пробое газа, порог которого в воздухе при давлении P0~1 атм для излучения с $\lambda = 0.6943$ мкм составляет $2 \cdot 10^{11}$ Вт/см² [6]. Возможно, что при $q \simeq q_{\pi}$ у поверхности твердой поглощающей преграды под действием излучения рубинового лазера развивается низкопороговый оптический пробой, исследованный в экспериментах с СО₂-лазерами [7]. Низкопороговый оптический пробой на длине волны 6943 Å экспериментально практически не изучался, тем не менее теоретическая модель для расчета этого порога существует [7]. Считая, что испарение, например, графита в начале лазерного импульса приведет к появлению молекул СО, а пробой произойдет в атмосфере газа СО с молекулярной массой A = 28 и потенциалом ионизации I = 15 эВ, найдем порог оптического пробоя излучением с длиной волны $\lambda = 0,6943$ мкм:

$$q_{\mathrm{fi}}^{*} = \frac{5.7 \cdot 10^{\mathrm{g}} I \, (\mathrm{yB})}{A \cdot \lambda^{2} \, (\mathrm{MKM})} \simeq 6 \cdot 10^{\mathrm{g}} \left(\frac{\mathrm{BT}}{\mathrm{cm}^{2}}\right).$$

Величина $|q_n^*|$ неплохо согласуется с найденной экспериментально величиной q_n .

Таким образом, теория точечного взрыва удовлетворительно описывает газодинамические процессы, развивающиеся у поверхности твердой поглощающей преграды под воздействием излучения рубинового лазера с плотностью потока мощности $10^8 \div 10^{11}$ Вт/см², при $t \ge 0.07$ ($E/2P_0$)^{1/3} c_0^{-1} ; при плотности потока мощности $10^{10} \div 10^{11}$ Вт/см² около 90% энергии лазерного излучения поддерживает волну поглощения в канале луча, а $5 \div 10\%$ энергии излучения инициируют цилиндрическую ударную волну вне канала, которая удовлетворительно описывается теорией точечного взрыва при $t \le 0.05$ ($E/2P_0$)^{1/3} c_0^{-1} .

СПИСОК ЛИТЕРАТУРЫ

[1] Данилычев В. А., Зворыкин В. Д.//Тр. ФИАН. 1983. 142. С. 117. [2] Robbl B. S., Тигсоtte D. L.//АІАА Journal. 1973. 11, N 6. P. 836. [3] Зорев Н. Н., Склизков Г. В., Шиканов А. С.//ЖЭТФ. 1982. 82. № 4. С. 1103. [4] Коројбейников В. П. Задачи теории точечного взрыва. М., 1985. [5] Броуд Г. Расчеты взрывов на ЭВМ. Газодинамика взрывов. М., 1976. [6] Райзер Ю. П. Лазерная искра и распространение разрядов. М., 1974. [7] Агеев В. П., Барчуков А. И., Бункин Ф. В. и др.//Изв. вузов. Физика. 1977. № 11. С. 34.

Поступила в редакцию 16.09.88