УДК 621.315.592

ИССЛЕДОВАНИЕ ПЛОТНОСТИ ЛОКАЛИЗОВАННЫХ ЭЛЕКТРОННЫХ состояний в аморфном гидрированном кремнии методом ЧАСТОТНОЙ ДИСПЕРСИИ ЕМКОСТИ БАРЬЕРА ШОТТКИ

Р. В. Прудников

(кафедра общей физики для химического факультета)

Показано, что кривые частотной дисперсии емкости барьера Шоттки на аморфных полупроводниках можно использовать для расчета распределения плотности электронных локализованных состояний в запрещенной зоне. Показано удовлетворительное согласие полученных результатов с известными из литературы.

Барьеры Шоттки на основе аморфного гидрированного кремния (a—Si:H)широко используются в фотопреобразователях солнечной энергии. КПД этих приборов в значительной мере зависит от плотности локализованных электронных состояний (ЛЭС) и их распределения по ширине запрещенной зоны. Последнее обусловливает вид кривых частотной дисперсии емкости (ЧДЕ) барьера Шоттки на основе а—Si: Н. Ясно, что в экспериментальных кривых ЧДЕ заложена информация о распределении плотности ЛЭС. Между тем извлечь эту информацию на практике оказывается не очень просто. Дело в том, что разработанные теоретические расчеты (см., напр., [1-4]) позволяют получать распределение ЛЭС по ширине запрещенной (см., напр., 11—41) позволяют получать распределение тос по ширине запрещенной зоны, используя метод CV-характеристик для равновесных кривых ЧДЕ. Однако-в эксперименте область равновесня на кривых ЧДЕ наблюдается, как правило, на сверхнизких частотах (10⁻³ Гц и ниже), что вызывает большие трудности при изме-рениях емкости. По этой причине авторы [3, 4] с целью расширения диапазона из-мерений ЛЭС прибегают к измерению кривых ЧДЕ при повышенных температурах. В дашией работо проядомоси, способ обслебстви систомистически и при на В данной работе предложен способ обработки экспериментальных кривых ЧДЕ, измеренных при комнатных температурах, с тем чтобы получать распределение ЛЭС, соответствующее области сканирования по частоте.

Пленки a-Si: Н n-типа толщиной 0,8 мкм наносились на покрытые тонким слоем хрома подложки из ситалла при разложении моносилана в тлеющем ВЧ-разряде. Для формирования барьера Шоттки сверху напылялся палладиевый электрод общей площадью ~7,25 10⁻² см². Высота барьера (0,9÷0,95 эВ) оценивалась по температурной зависимости обратной ветви вольт-амперной характеристики. Положение уровня Ферми в объеме (Е = 0,35 эВ от края зоны проводимости) вычислялось из температурной зависимости проводимости при величине температурного едвига 2·10-4 эВ·К-1. Емкость при нулевом смещении измерялась мостом полных проводимостей со световым трансформатором [5], а также методом фазового выделения адмитанса [6]. Все измерения проводились в вакууме 10-3 Па при температуре 293 К. Предварительно все образцы прогревались при 450 К в течение 15 мин.

На рис. 1 приведена типичная кривая ЧДЕ одного из образцов, изготовленного по указанной выше технологии. Теоретическая обработка этой кривой осуществляпо указанной выше технологии. теорети технол соргание и по в по в технологии технол ной за ЧДЕ является дисперсия времен перезарядки ЛЭС. При этом емкость барьера С, зависящая от частоты ю, рассматривается состоящей из двух последовательно включенных емкостей:

$$C(\omega)^{-1} = C(\psi_c)^{-1} + C_{x_c}(\psi_s, \psi_c)^{-1}, \qquad (1)^n$$

где C(ψ_c) — емкость слоя перезаряжающихся ЛЭС, ψ_c — величина потенциала, докоторого происходит перезарядка ЛЭС. Согласно [1],

$$e | \psi_c = kT \ln \frac{1}{\omega \tau_0} - E_F,$$

где $\tau_0 = 10^{-14}$ с — эмпнрический параметр, E_F — энергия уровня Ферми. Емкость $C_{x_c} = \epsilon \epsilon_0 / X_c$ определяется глубиной слоя X_c , в котором перезарядка: ЛЭС отсутствует:

$$X_{c} = \int_{\psi_{c}}^{+s} \frac{d\psi}{Q(\psi)}, \qquad (2)$$

где ψ_s — поверхностный потенциал, $Q(\psi)$ — плотность заряда ЛЭС для данного потенциала ψ .

Запищем известное выражение для Q, определяемое величинами ψ_c и распределением плотности ЛЭС n(E) [1]:

$$Q(\psi_c) = \left(2|e| ee_0 \int_0^{\psi_c} \int_{E_F}^{E_F} n(E) dE d\psi\right)^{1/2}.$$
(3)

Используя (3), можно получить распределение плотности ЛЭС относительно энергии уровня Ферми, соответствующее области сканирования по частоте ω, т. е. диапазону изменений потенциала ψ_c:

$$n\left(E_{F}-|e||\psi_{c}\right) = \frac{1}{|e|\varepsilon\varepsilon_{0}} \left[\left(\frac{dQ}{d\psi_{c}}\right)^{2} + Q\frac{d^{2}Q}{d\psi^{2}} \right] = \frac{1}{|e|\varepsilon\varepsilon_{0}} \left[C\left(\psi_{c}\right)^{2} + \int_{0}^{\psi_{c}} C\left(\psi\right) d\psi \frac{dC\left(\psi_{c}\right)}{d\psi_{c}} \right].$$

$$(4)$$

Рис. 1. Зависимость емкости барьера Шоттки на основе a—Si:H от частоты: E_F = = 0,35 эВ, ψ_s =0,6 В

Из (4) видно, что расчет распределения плотности ЛЭС сводится к вычислению емкости $C(\psi_c)$ при данной частоте ω из кривой ЧДЕ, определяемой формулой (1). Эту задачу можно решать разными способами. В данной работе $C(\psi_c)$ аппроксимировалась функцией вида $C(\psi_c) = A \exp(b\psi_c)$, где параметры A и b в общем случае зависят от ψ_c .

Из (1) и (2) следует

$$C(\omega) = \frac{A}{\exp(-b\psi_c) + \ln \frac{\exp(b\psi_c) \left[\exp(b\psi_s) - 1\right]}{\exp(b\psi_s) \left[\exp(b\psi_c) - 1\right]}}.$$
(5)

Из (4), (5) имеем

$$n \left(E_{F} - |e| \psi_{c} \right) = \frac{c^{2} \left(\omega \right)}{|e| \varepsilon \varepsilon_{0}} \left\{ \exp \left(-b\psi_{c} \right) + \ln \frac{\exp \left(b\psi_{c} \right) \left[\exp \left(b\psi_{s} \right) - 1 \right]}{\exp \left(b\psi_{s} \right) \left[\exp \left(b\psi_{c} \right) - 1 \right]} \right\}^{2} \times \exp \left(b\psi_{c} \right) \left[2\exp \left(b\psi_{c} \right) - 1 \right].$$
(6)

Параметр *b* для данного ψ_c можно найти, продифференцировав (5) по ψ_c . После несложных преобразований получаем уравнение относительно параметра *b*:

$$\frac{C'(\psi_c)}{C(\psi_c)} \frac{\left[\exp\left(b\psi_c\right) - 1\right]}{b\left[2 - \exp\left(-b\psi_c\right)\right]} \left\{ \exp\left(-b\psi_c\right) + \ln\frac{\exp\left(b\psi_c\right)\left[\exp\left(b\psi_s\right) - 1\right]}{\exp\left(b\psi_s\right)\left[\exp\left(b\psi_c\right) - 1\right]} \right\} = 1. (7)$$

С использованием численного решения уравнения (7) по формуле (6) была рассчитана плотность ЛЭС из кривой ЧДЕ (см. рис. 1). Результаты расчета представлены на рис. 2. Там же приведены данные работы [7], полученные для аналогичных образцов, но другим способом. Видно, что результаты удовлетворительно согласуются. Следовательно, предложенный способ обработки экспериментальных кривых ЧДЕ можно использовать для расчета ЛЭС в аморфных полупроводниках.

Автор выражает глубокую благодарность В. Ф. Киселеву и С. Н. Козлову за ценные замечания при обсуждении результатов данной работы.

СПИСОК ЛИТЕРАТУРЫ

[1] Abram R. A., Doherty P. J.//Phil. Mag. 1982. **B45**. P. 167. [2] Archibald J. W., Abram R. A.//Phil. Mag. 1983. **B48**. P. 111, [3] Jousse D., Deleonibus S.//J. Appl. Phys. 1983. **54**. P. 4001. [4] Misra D. S., Kumar A., Agarwal S. C.//J. Non-Cryst. Sol. 1985. **76**. P. 215. [5] Нахмансон Р. С., Ерков В. Г.// //ПТЭ. 1973. № 3. С. 147. [6] Белотелов С. В., Сурис Р. А., Федоров В. Н.// //ПТЭ. 1978. № 1. С. 216. [7] Lang D. V. et al.//Phys. Rev. 1982. **B25**. P. 5285.

Поступила в редакцию 23.03.89