мы опираемся на аналогию с круговой поляризацией синхротронного излучения [4]: вращение поляризации совпадает с вращением частицы, которое задается относительно направления волнового вектора фотона К. (Если К направлен в сторону положительных значений *z* — поляризация правая и наоборот, причем внешнее магнитное поле параллельно *Oz*.)

Замечание. Физической (измеримой) величиной в случае радиационного рассеяния является распределение конечных частиц по импульсам. Полная информация об этом заключается в дифференциальном сечении процесса $d\sigma_R$ [6], которое для нашего случая определяется выражением (на единицу длины соленоида)

$$\frac{d\sigma_{R(\pm 1)}}{\sin\theta \,d\theta \,d\omega} = \frac{Q^2}{\hbar c} \left(\frac{L}{2\pi}\right)^3 L \frac{K_R \left(E'_n/(c\hbar) + K_R \cos^2\theta\right)}{v_n} d\varphi'_{\perp} d\varphi_k, \tag{12}$$

где v_n — скорость частицы в начальном состоянии. Для нерелятивистской частицы в дипольном приближении (12) совпадает с (1) после интегрирования по θ .

СПИСОК ЛИТЕРАТУРЫ

[1] Аһагопоv Ү., Воһт D.//Phys. Rev. 1959. 115. Р. 485. [2] Серебряный Е. М., Скаржинский В. Д.//Кр. сообщения по физике ФИАН. 1988. № 6. С. 45. [3] Скаржинский В. Д.//Тр. ФИАН. 1986. 167. С. 139. [4] Соколов А. А., Тернов И. М. Релятивистский электрон. М., 1983. [5] Прудников А. П., Брычков Ю. А., Маричев О. И. Интегралы и ряды. Специальные функции. М., 1984. [6] Боголюбов Н. Н., Ширков Д. В. Введение в теорию квантованных люлей. М., 1984.

Поступила в редакцию 28.12.88

"ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 1

РАДИОФИЗИКА

УДК 621.384.6.1

ДЛИННОВОЛНОВЫЕ ВОЗМУЩЕНИЯ В ЛИНИИ С МАГНИТНОЙ ИЗОЛЯЦИЕЙ

О. И. Василенко

(НИИЯФ)

Рассматривается распространение длинноволновых возмущений в однородном в продольном направлении магнитоизолированном электронном потоке в полосковой линии. Найдена скорость распространения возмущений, исследованы пределы применимости результатов.

В устройствах, предназначенных для генерации и транспортировки мощных сильноточных пучков заряженных частиц, используются электрические поля высокой напряженности. Когда последняя превышает 10⁵ В/см, единственным способом предотвращения пробоя является наложение сильного магнитного поля, приводящего к дрейфу электронов в скрещенных полях вдоль электродов и препятствующего их прохождению на анод. Этот способ устранения межэлектродных токов называется магнитной изоляцией.

11

Ниже рассматриваются стационарный режим магнитной изоляции в полосковой линии и его малые квазистационарные возмущения [1].

Стационарный режим магнитной изоляции. Для описания стационарного электронного потока применим приближения холодной односкоростной гидродинамики. Используем систему единиц, в которой заряд электрона, его масса покоя и скорость света равны единице.

Пусть р — импульс, $\gamma = \sqrt{(p, p) + 1}$ — релятивистский фактор потока. Динамика пучка описывается уравнением

$$\left(\frac{\mathbf{p}}{\gamma}, \nabla\right)\mathbf{p} = -\nabla\Phi + \left[\frac{\mathbf{p}}{\gamma}, \mathbf{B}\right],$$

в котором магнитное поле **В** и электростатический потенциал Ф удовлетворяют уравнениям Максвелла

rot $\mathbf{B} = 4\pi\rho p/\gamma$, $\Delta \Phi = -4\pi\rho$.

Здесь через р обозначена плотность заряда.

Рассмотрим передающую линию, образованную двумя прямоугольными плоскими электродами. Введем декартову систему координат (x, y, z), в которой ось x перпендикулярна плоскости электродов, а ось z

направлена вдоль длинной стороны линии (рис. 1). В однородном по y случае при $p_y=0$, $B_x=B_z=0$, $B_y=B$ система уравнений упрощается и сводится к виду

$$\frac{\partial B}{\partial x} = -\Delta \Phi \frac{p_z}{\gamma}, \quad \frac{\partial B}{\partial z} \quad \Delta \Phi \frac{p_x}{\gamma}, \\ B = \frac{\partial p_z}{\partial x} - \frac{\partial p_x}{\partial z}, \quad \Phi + \gamma = 0$$

в области, занятой пучком, и

 $\Delta \Phi = 0$, B = const

в вакуумной области.

(1)

(2)

12

Будем считать, что эмиссия электронов происходит в режиме ее ограничения пространственным зарядом. Поэтому сила, действующая на прикатодный электрон $(x=x_c)$, равна нулю. Таким образом, при $x=x_c$

$$\frac{\partial \Phi}{\partial z} = 0, \quad \frac{\partial \Phi}{\partial x} + \frac{p_z}{\gamma} B = 0.$$

Предполагается, что все электроны потока эмитируются с одного эквилотенциального катода (условие $\Phi + \gamma = 0$).

В достаточно протяженной линии устанавливается режим, характеристики которого не зависят от продольной координаты z. Поэтому, полагая $\partial/\partial z = 0$, получим решение, описывающее стационарный однородный режим магнитной изоляции [2—6]. В области, примыкающей к катоду и занятой пучком: $x_c \leqslant x \leqslant x_m$, оно имеет вид

$$p_{z}=0, \quad B=B_{a}\frac{\gamma}{\mathrm{i}\mathrm{ch}\,\psi}, \quad -\Phi=\gamma=\mathrm{ch}\left(\psi\frac{x-x_{c}}{x_{m}-x_{c}}-\eta\right), \quad (3)$$

а вне пучка в вакуумной области $x_m \leqslant x \leqslant x_a$

$$\Phi = -\operatorname{ch}(\psi - \eta) - \psi \frac{x - x_m}{x_m - x_c} \operatorname{sh}(\psi - \eta), \quad B = B_a \frac{\operatorname{ch}(\psi - \eta)}{\operatorname{ch}\psi}.$$
 (4)

Через x_m и x_a обозначены координаты границы пучок—вакуум и анода соответственно.

Решение (3), (4) справедливо в системе отсчета, движущейся относительно электродов линии с произвольной постоянной скоростью $u = = th \eta$ вдоль оси *z*. Параметр ψ характеризует решение на границе пучок—вакуум; например, скорость граничного электрона равна $th(\psi - \eta)$.

В лабораторной системе координат электрон на катоде имеет нулевой импульс и параметр η равен нулю. Положим потенциал анода равным $\Phi(x=x_a) = -V-1$. Тогда дополнительные соотношения, связывающие анодное магнитное поле B_a , параметр ψ и координату x_m , имеют вид

$$(x_a - x_c) B_a = \left(\psi + \frac{V + 1 - \operatorname{ch} \psi}{\operatorname{sh} \psi}\right) \operatorname{ch} \psi,$$

$$(x_m - x_c) B_a = \psi \operatorname{ch} \psi.$$

Решение описывает режим, в котором электроны движутся по прямолинейным траекториям, параллельным оси г, и суммарная сила, действующая на них со стороны электрического и магнитного полей, равна нулю. На рис. 2 представлена типичная зависимость величин анодного B_a и катодного $B_a/ch\psi$ магнитных полей от напряжения на границе электронного слоя V_m=ch ψ-1 при фиксированном анодном напряжении V. При больших значениях магнитных полей электронный слой прижат к катоду и V_m мало. При уменьшении В_а все большая часть полного тока переносится электронами пучка и величины V_m и x_m-x_c возрастают. При дальнейшем уменьшении Ва появляется двузначность в распределении полного тока между его катодной и электронной компонентами. При $0 < V_m < V_{m \min}$ электронный слой прижат к катоду и переносит меньший ток, чем при $V_{m \min} \leq V_m \leq V$, когда электронный слой поднят и заполняет заметную часть межэлектродного пространства (вплоть до анода при V_m=V). Прижатая и поднятая ветви соединяются при V_m = V_{m min}. Соответствующая величина магнитного поля минимальная, при которой еще возможен режим магнитной изоляции.

13

(5)

При $B_a < B_{a \min}$ электроны достигают анода и его изоляция нарушается. Как следует из соотношения (5), величина параметра ψ на границе магнитной изоляции удовлетворяет соотношению

(6)

$$V+1-\operatorname{ch}\psi-\psi\operatorname{sh}^{3}\psi=0.$$

Длинноволновые возмущения. Рассмотрим малые возмущения магнитоизолированного потока, распространяющиеся вдоль оси z с постоянной скоростью и в лабораторной системе. Дальнейший анализ проведем в движущейся со скоростью и системе координат, где задача стационарна и описывается уравнениями (1), (2). Стационарный в любой системе и однородный по г режим магнитной изоляции в движущейся системе координат описывается решением (3), (4), в котором нужно положить $\eta = \operatorname{arcth} u$, и соотношениями (5), в которых величины B_a и V сохраняют свой смысл анодного магнитного поля и межэлектродной разности потенциалов в лабораторной системе координат. Как следует из вида решения (3), (4), характерная длина изменения величин в поперечном направлении равна (xm-xc)/ф. Поэтому если характерная длина малых возмущений в продольном направлении много больше $(x_m - x_k)/\psi$, то можно считать, что возмущенное решение по-прежнему описывается выражениями (3), (4), в которых внутренние параметры зависят от z.

Обозначим через $\delta(z)$ возмущение единственного параметра $\psi/(x_m-x_k)$ в решении (3). Разложим величины в ряд Тейлора, сохраняя первые неисчезающие по δ члены, которые обозначим индексом «1». Для невозмущенных частей оставим прежние обозначения. Тогда $\psi/(x_m-x_c) = \delta$ и в области, занятой пучком,

$$B_{1} = \delta (ch \xi + (\xi + \eta) sh \xi),$$

$$\Phi_{1} = -\delta (x - x_{c}) sh \xi, \quad \xi = \psi (x - x_{c})/(x_{m} - x_{c}) - \eta.$$

В вакуумной области, согласно (2), магнитное поле постоянно, поэтому $B_1=0$. Потенциал анода также постоянен, поэтому поправка к потенциалу, которая, согласно виду решения (4), является линейной функцией x, имеет вид

$$\Phi_1 = e(x_a - x),$$

где e(z) — возмущение поперечного электрического поля.

Поля и потенциал должны быть непрерывными на границе вакуум—пучок. Положение этой границы также смещается относительно x_m . Однако для установления связи между возмущениями внутри пучка и в вакууме будем считать положение границы пучок—вакуум неизменным, равным x_m , а для учета ее вариации в граничных условиях введем поверхностную плотность зарядов v на поверхности раздела. Тогда при $x = x_m$ потенциал непрерывен:

$$(\Phi_1)_v - (\Phi_1)_b = e(x_a - x_m) + \delta(x_m - x_c) \operatorname{sh} \xi_m = 0,$$

а поперечное электрическое поле испытывает скачок:

$$\left(-\frac{\partial \Phi_1}{\partial x}\right)_{v} - \left(-\frac{\partial \Phi_1}{\partial x}\right)_{b} = e - \delta \left(\operatorname{sh} \xi_m + \psi \operatorname{ch} \xi_m\right) = 4\pi v.$$

Индексами «b» и «v» отмечены величины внутри пучка и в вакууме соответственно. Магнитное поле также разрывно, так как граничные элек-

14

троны, двигаясь со скоростью th ξ_m , создают поверхностную плотность тока v th ξ_m :

$$(B_1)_{\boldsymbol{v}} - (B_1)_{\boldsymbol{v}} = -\delta \left(\operatorname{ch} \boldsymbol{\xi}_m + \boldsymbol{\psi} \operatorname{sh} \boldsymbol{\xi}_m \right) = 4\pi \boldsymbol{v} \operatorname{th} \boldsymbol{\xi}_m.$$

Граничные соотношения являются линейными однородными уравнениями для возмущений б, е, v. Они имеют ненулевые решения при их линейной зависимости, что эквивалентно условию

th
$$\xi_m = \pm \sqrt{\frac{x_a - x_m}{x_a - x_c}}$$
.

Выражая у через вариацию границы пучка Δx_m :

$$\mathbf{v} \equiv \mathbf{\rho}_m \,\Delta x_m = \frac{1}{4\pi} \left(\frac{\Psi}{x_m - x_c} \right)^2 \operatorname{ch} \xi_m \,\Delta x_m,$$

перепишем последнее граничное соотношение:

$$(1+\psi \th \xi_m) \cdot \Delta \left(\frac{\psi}{x_m-x_c}\right) + \left(\frac{\psi}{x_m-x_c}\right)^2 \th \xi_m \cdot \Delta x_m = 0.$$

В такой форме оно описывает характеристики [7] телеграфных уравнений [8] для динамики импульса напряжения в линии, причем следующее из (7) значение и приобретает смысл локальной скорости.

Скорость распространения возмущений. Для анализа особенностей: полученного решения рассмотрим ситуацию в вакуумной области в системе отсчета, движущейся относительно лабораторной системы со скоростью и, и в которой электрон на границе вакуум-пучок неподвижен. Скорость распространения возмущений в этой системе описывается. правой частью соотношения (7). В выбранной системе отсчета условия на границах вакуумной области не зависят от направления вдоль г. Поэтому в ней должны существовать две волны, имеющие одинаковые по величине и противоположные по направлению скорости, что полностью согласуется с (7). Абсолютная величина скорости в линии безэлектронов (при $x_m = x_c$) равна, очевидно, скорости света. Присутствие электронов, обладающих конечной инерцией, отражается в граничных условиях на поверхности вакуум-пучок и приводит к замедлению скорости тем большему, чем больше в линии электронов, т. е. чем больше величина $(x_m - x_c)/(x_a - x_c)$.

Другим фактором, влияющим на абсолютную величину скорости, являются условия на аноде. В системе отсчета, в которой скорость распространения возмущений равна нулю, анод эквипотенциален. Поэтому при приближении границы электронного слоя к аноду флуктуация потенциала на ней стремится к нулю, а вместе с ней, при ограниченных eи v, стремятся к нулю и величины δ и ξ_m . В пределе при $x_m = x_a$ электронный поток не возмущен и процесс сводится только к движению новерхностной плотности заряда v со скоростью граничного, т. е. прианодного, электрона, которая и равна скорости распространения возмущений. В данной системе эта скорость равна нулю.

Наконец, рассмотрим ситуацию в лабораторной системе отсчета. Из (7) находим скорость *u*=th η распространения возмущений в этой. системе. Выражая ее через V и ψ, получим

$$u_{\pm} = \left(\operatorname{th} \psi \pm \sqrt{\frac{V+1-\operatorname{ch} \psi}{V+1-\operatorname{ch} \psi + \psi \operatorname{sh} \psi}} \right) \times \left(1 \pm \operatorname{th} \psi \sqrt{\frac{V+1-\operatorname{ch} \psi}{V+1-\operatorname{ch} \psi + \psi \operatorname{sh} \psi}} \right)^{-1}$$

(8)

(7);

Зависимости u_{\pm} от напряжения на границе электронного слоя $V_m = ch \psi - 1$ при фиксированном анодном напряжении V приведены на рис. 3. В случае прижатого электронного слоя при малых ψ условия в

Рис. З

Рис. 4

Рис. 3. Зависимость скорости распространения возмущений и от напряжения на границе электронного слоя V_m при фиксированном анодном напряжении V=200 кВ (1), 500 кВ (2), 1 МВ (3), 2 МВ (4), 5 МВ (5), 10 МВ (6); 7 — скорость граничного электрона, равная th ψ . Кружками обозначены точки пересечения кривых 5 и 6 с кривой 7

Рис. 4. Зависимость нижней границы длины волны λ_{\pm} от напряжения на границе электронного слоя V_m при фиксированном анодном напряжении V. Нумерация кривых — как на рис. 2

линии близки к чисто вакуумным и имеются две волны, распространяющиеся в противоположных направлениях со скоростями, близкими к световым:

$$u_{\pm} = \pm \left(1 - \frac{\psi^2}{2V}\right).$$

По мере увеличения V_m число электронов и обусловленный ими инериионный фактор торможения возрастают и абсолютные значения скоростей уменьшаются. Значение $|u_{-}|$ убывает быстрее, чем u_+ , вследствие эффекта «сноса» скорости u_- средой, движущейся в противоположном направлении. Последний фактор приводит к тому, что при $V_m = V_m \min$ скорость u_- обращается в нуль, при дальнейшем увеличении V_m меняет знак и, оставаясь положительной, растет по абсолютной величине вместе с ростом средней скорости среды. Под влиянием условий на аноде при приближении к режиму полного заполнения обе скорости стремятся к скорости граничного электрона. Обращение u_- в нуль именно на границе магнитной изоляции можно объяснить, обратившись к рис. 2. При заданном анодном напряжении в области двузначности в линии могут существовать одновременно два состояния с $V_m \downarrow \neq V_m 2$ н $J_a(V_m 1) =$ $= J_a(V_m 2)$ со стационарной переходной областью. Предельным случаем этой ситуации при V_{m1} , $V_{m2} \rightarrow V_{m\min}$ и являются стационарные малые возмущения на границе режима магнитной изоляции.

Выражение (8) для скорости распространения малых возмущений не зависит от их формы и справедливо при условии, что длина возмущений в лабораторной системе λ превышает $\frac{x_m - x_c}{\psi} \sqrt{1 - u_{\pm}^2} = \lambda_{\pm}$.

Для λ_{\pm} выполняется соотношение $\lambda_{-} \gg \lambda_{+}$, причем равенство достигается только в режиме полного заполнения пучком межэлектродного пространства при $V_m = V$. В случае сильно прижатого к катоду электронного слоя, когда V_m->0, асимптотическое поведение нижней границы дливозмущений λ_{\pm} описывается выражением $\lambda_{\pm} = 2V_m/V^{3/2}$. Зависины мость λ_± от потенциала границы электронного слоя V_m при заданном анодном напряжении V приведена на рис. 4. Все ее особенности пред- $\frac{2J_c}{2J_c} - \frac{x_a - x_c}{2J_c}$ ab ставляются очевидными следствиями хода кривых для $x_m - x_c$ (рис. 2) и u_± (рис. 3), рассмотренных выше. Максимальное значение λ_ приблизительно соответствует границе магнитной изоляции и уменьшается с ростом V. В широком диапазоне анодных напряжений величина λ_± не превышает межэлектродного расстояния и в основном много меньше его. Поэтому полученные результаты справедливы во всех случаях, когда имеется в системе или ее части режим однородной магнит-

ной изоляции.

СПИСОК ЛИТЕРАТУРЫ

[1] Василенко О. И. Вопросы теории магнитной изоляции линий и диодов: Автореф. дис. ... канд. физ.-мат. наук. М. (МГУ), 1978. [2] Василенко О. И.// //Вестн. Моск. ун-та. Физ. Астрон. 1978. 19, № 5. С. 17. [3] Данилов В. Н.//Радиотехн. и электроника. 1963. 8, № 11. С. 1892. [4] Данилов В. Н.//Там же. 1966. 11, № 11. С. 1994. [5] Сгееdоп Ј. М.//Ј. Аррl. Phys. 1975. 46, № 7. Р. 2946. [6] Василенко О. И.//ЖТФ. 1979. 49, № 1. С. 76. [7] Гордеев А. В., Заживихин В. В.//Вопросы атомной науки и техники. Сер. Термоядерный синтез. 1982. Вып. 1 (9). С. 55. [8] Voronin V. S., Kolomensky A. A., Krastelyev E. G. ef al.//Proc. 3rd Intern. Topical Conf. on High Power Electron and Ion Beam. Research and Technology. Novosibirsk, 1979. Vol. 2. P. 593.

Поступила в редакцию 24.10.88

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 1

УДК 533.9

КИНЕТИЧЕСКАЯ ТЕОРИЯ ВОЗБУЖДЕНИЯ НЕМОНОСКОРОСТНЫМ ПУЧКОМ ЭЛЕКТРОНОВ ШИРОКОГО СПЕКТРА СПИРАЛЬНЫХ ВОЛН В КОНЕЧНОМ МАГНИТНОМ ПОЛЕ В УСЛОВИЯХ АНОМАЛЬНОГО ЭФФЕКТА ДОПЛЕРА

М. В. Кузелев, Р. В. Романов

(кафедра физической электроники)

Изложена нелинейная теория излучения горячим электронным пучком широкого спектра спиральных электромагнитных волн в конечном магнитном поле в условиях аномального эффекта Доплера. Выяснен механизм стабилизации неустойчивости, приведены численные и аналитические решения.

В последнее время большой интерес исследователей вызывает изучение кинетических и гидродинамических неустойчивостей в условиях аномального эффекта Доплера. В линейном гидродинамическом при-

2 ВМУ, № 1, физика, астрономия