Номер покрытия	Толщины слоев, нм				
	<i>d</i> 1	d_2	d 3	d ₄	r min
1	18,5	28,5	124,6	103,5	3-10-3
2	2,9	47,8	9,2	136,3	7·10-4

лу (2) и значения функционала F_{\min} в соответствующих локальных минимумах. Спектрально-угловые характеристики 1-го и 2-го покрытий приведены соответствению ча рис. 1, 2. Для сравнения на рисунках показан коэффициент пропускания поверхности подложки без покрытия.

Поступила в редакцию 17.04.89

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 1

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 536.631

ВЛИЯНИЕ ОСВЕЩЕНИЯ В УЛЬТРАФИОЛЕТОВОМ ДИАПАЗОНЕ НА ФАЗОВЫЙ ПЕРЕХОД ПОЛУПРОВОДНИК—МЕТАЛЛ В ПЛЕНКАХ VO2

Н. Л. Левшин, С. Ю. Поройков

(кафедра общей физики для химического факультета)

Освещение в УФ-диапазоне влияет на фазовый переход полупроводник-металл в пленках VO₂: изменяются скачок сопротивления и температура фазового перехода и уширяется петля температурного гистерезиса.

В ряде работ было проведено детальное исследование влияния ионного [1-2]и электронного [3] облучения на фазовый переход полупроводник—мсталл (ФППМ) в пленках VO₂. Как электронное, так и ионное облучение (с энергией в единицы и десятки килоэлектрон-вольт) воздействовало на весь объем пленки и приводило к некоторому подавлению ФППМ и понижению критической температуры. В работе [4] было исследовано влияние адсорбции донорных молекул на температуру T_{σ} ФППМ в пленках VO₂. Другим примером поверхностных воздействий на температуру T_{c} является эффект фотосенсибилизации ФППМ [5]. В настоящей работе нами исследовано влияние УФ-освещения, поглощаемого в узкой приповерхностной области (~20 нм), на ФППМ в пленках двуокиси ванадия.

Изучались поликристаллические пленки VO₂ (толщиной ~0,3 мкм) на сапфировых подложках. Скачок сопротивления при ФППМ составлял 10⁴. Все измерения проводились в вакууме ~10⁻⁴ Па. Температура пленки контролировалась платиновым термометром сопротивления с точностью ±0,15 К. Образцы освещались лампой ДКСШ-1000. Для предотвращения нагрева образца при освещении на пучка света была поставлена водяная линза толщиной 5 см с кварцевыми окнами. Мощность падающего света измерялась прибором ИМО-2М. Для выделения УФ-света с определенной энергией квантов использовались стеклянные светофильтры

Освещение образдов проводилось при температурах 350, 400 и 410 К, соответствующих металлической фазе. Прогрев пленки VO2 при температуре 410 К не приводил к необратимым изменениям ее свойств [4]. После выключения света образец естывал до комнатной температуры, после чего исследовалась зависимость сопротивления R пленки от температуры T. На рис. 1 представлены зависимости R(T), полученные на образце, подвергнутом различным дозам облучения. При дозах $D \leqslant 5 \cdot 10^{20}$ фотон см⁻² зависимость R(T) не менялась. С увеличением дозы до $D = 5 \cdot 10^{21}$ фотон см⁻² происходило постепенное уменьшение сопротивления образца в полупроводниковой фазе (кривые 1, 1', 2, 2'). Существенных изменений ширины гистерезиса и температуры фазового перехода не наблюдалось. Увеличение дозы облучения до $D=8\cdot 10^{22}$ фотон см⁻² приводило к дальнейшему понижению сопротивления

образца (примерно в 60 раз) в низкотемпературной фазе, увеличению размытия фазового перехода, снижению температуры ФППМ ($\Delta T \sim 1$ K) и увеличению температурного гистерезиса на 1 K (кривые 3, 3). На рис. 2 представлены зависимости проводимости образца при температуре 295 K от дозы облучения. Возрастание температуры облучения T_0 образца приводило к существенному росту проводимости в полупроводниковой фазе (кривые 2, 3, 4). При $T_0=350$ K кривая 2 выходила на насыщение, чего не удавалось достичь для $T_0=400$ н 410 K вплоть до доз облучения D= $=8\cdot10^{22}$ фотон см⁻². Увеличение энергии квантов света также приводило к росту проводнмости (кривые 1 и 2). При облучении светом в УФ-диапазоне с энергией 3—6 зВ наибольшему изменению подвергался скачок сопротивления при ФППМ, поскольку свет поглощался в узкой приповерхностной области толщиной ~ 20 нм (ко-

Рис. 1

Рис. 2

Рис. 1. Зависимость сопротивления пленки VO₂ от температуры при нагревании (1, 2, 3) и охлаждении (1', 2', 3') образца. Доза облучения $D=0\div5\cdot10^{20}$ (1, 1'); $5\cdot10^{21}$ (2, 2') и $8\cdot10^{22}$ фотон см⁻² (3, 3'). Облучение проведено при температуре 400 К

Рис. 2. Зависимость проводимости пленки VO₂ от дозы облучения при T=295 K; σ_{0} — проводимость необлученного образца. Энергия квантов света равна 3—4 (1) и 3—6 эВ (2—5). Облучение проведено при температуре 350 (1, 2), 400 (3), 410 (4) и 320 K (5)

эффнциент поглощения ~5.10⁵ см⁻¹ [6]). Приповерхностный слой, подвергнутый облучению, слабо влиял на объемные свойства пленки (критическую температуру), но оказывал существенное воздействие на проводимость в полупроводниковой фазе за счет параллельного включения низкоомной приповерхностной области. Низкая энергия квантов света по сравнению с энергией электронов и ионов приводила к необходимости существенного увеличения дозы облучения, которая в нашей работе была на 8—9 порядков больше, чем при ионной имплантации, и на 3—4 порядка выше, чем при электронном облучении.

Освещение в УФ-диапазоне так же, как и ионная имплантация и электронное облучение, приводит к подавлению ФППМ, расширению петли гистерезиса и более сильному цонижению температуры фазового перехода при охлаждении образца. В монографии [7] приводятся энергии образования точечных дефектов в металлах, составляющие единицы электрон-вольт, причем образование вакансий энергетически более выгодно, чем внедрение атома в междоузлие. Все это позволяет предположить, что при УФ-облучении также происходит десорбиня кислорода с поверхности образиа. Образовавшиеся на поверхности кислородные вакансии могут диффундировать в глубь пленки. Это предположение подтверждается данными рис. 2. При достаточно низкой температуре облучения $T_0=350$ К наблюдается насыщение роста проводимости при увеличении дозы облучения. Повышение температуры T_0 увеличивает диффузию вакансий. Выдерживание обработанных УФ-облучением пленок на воздухе при комнатной температуре длительное время приводит к частичному восстановлению свойств образца, что позволяет говорить об отжите образованных дефектов. Облучение образцов в полупроводниковой фазе при 330 К не приводило к существенному изменению их свойств (рис. 2, кривая 5). Аналогичный эффект наблюдался и в случае электронного облучения [3].

Авторы благодарят В. Ф. Киселева за интерес к работе и полезные замечания.

СПИСОК ЛИТЕРАТУРЫ

[1] Аброян И. А., Величко В. Я., Гаврилюк А. И. идр.//Письма в ЖТФ.
1978. 4, № 10. С. 565. [2] Величко В. Я.//Письма в ЖТФ. 1980. 6, № 22. С. 1345.
[3] Леонов А. С., Подсвиров О. А.//Письма в ЖТФ. 1984. 10, № 17. С. 1046.
[4] Киселев В. Ф., Козлов С. Н., Левшин Н. Л., Смирнов Н. И.//ФТТ.
1988. 30, № 3. С. 924. [5] Зайцев В. Б., Киселев В. Ф., Левшин Н. Л. и др.//
//ДАН СССР. 1989. 304, № 3. С. 649. [6] Мокеров В. Г., Сарайкин В. В.//
//ФТТ. 1976. 18, № 7. С. 1801. [7] Дамаск А., Динс Дж. Точечные дефекты в металлах. М., 1966.

Поступила в редакцию 26.04.89

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 1

УДК 621.315.592

РАЗОГРЕВ ЭЛЕКТРОНОВ В КОМПЕНСИРОВАННОМ ПОЛУПРОВОДНИКЕ Ge<Au, Sb>

И. А. Курова, А. М. Идалбаев

(кафедра физики полупроводников)

В компенсированном полупроводнике Ge(Au, Sb) в условиях ИК-подсветки и в темноте исследованы температурные зависимости холловской подвижности при 5 <T<100 К и влияние на ее величину электрического поля. Показано, что при T <8 К рост и насыщение в условиях ИК-подсветки обусловлены фоторазогревом электронов; оценено отношение т_е/т.

В предыдущих работах [1, 2] мы сообщали, что в компенсированном полупроводнике Ge(Au, Sb) при T < 10 К в условиях ИК-подсветки с понижением температуры наблюдаются резкий рост и насыщение подвижности электронов. Полученные результаты объяснялись наличием в зоне проводимости нетермализованных фотоэлектронов с большой подвижностью, вклад которых в подвижность пропорционален τ_c/τ (τ_c — время релаксации энергии, τ — время жизни электронов) и возрастает с понижением температуры. При фиксированной энергии фотовозбуждения отношение τ_c/τ_a с следовательно, и вклад в подвижность зависят не только от температуры, но и от величины электрического поля [3].

Целью настоящей работы является исследование влияния электрического поля на холловскую подвижность μ_H в компенсированном Ge(Au, Sb) при T < 10 K в условиях ИК-подсветки н в темноте. Для получения дополнительной информации при интерпретации результатов исследовались также температурные зависимости $\mu_H(T)$ в более широком, чем в предыдущих работах, интервале температур (5—100 K). Холловская подвижность определялась по данным измерений пободимости σ и постоянной Холла R. Исследовались образцы двух типов: 1) с малым заполнением верхнего акцепторного уровня золота: $E_i = E_c - 0.04$ зВ ($2N_{Au} < N_{Sb} < 3N_{Au}$) и 2) с частичной компенсацией уровня сурьмы ($N_{Sb} > 3N_{Au}$). Для образцов 1-го типа изтруднены из-за высокоомности образцов. Для образцов 2-го типа измерения проводились как в темноте, так и при ИК-подсветке. ИК-подсветка осуществлялась CO₂-лазером через охлажденный фильтр InSb.

В компенсированном Ge(Au, Sb) потенциальный рельеф, создаваемый заряженный примесями, является причиной аномальных температурных зависимостей $\mu_H(T) \sim \sigma R$ [1]. Параметром, определяющим влияние потенциального рельефа на $\mu_H(T)$, является отношение $\varepsilon_p/(kT)$ (ε_p — уровень протекания). При $\varepsilon_p < kT$ рельеф не оказывает влияния на μ_H . На рис. 1 приведены типичные зависимости $\mu_H = \sigma R$ для образцов обоих типов при лазерной подсветке (1, 3) и в темноте для образца 2-го типа (2). Видно, что при T > 8 К для образца 1-го типа при фотовоз-буждении электронов, а для образцов 2-го типа — в равновесных условиях не наблюдается аномальных температурных зависимостей μ_H : $\mu_H \sim T^{3/2}$ в интервале

95