Мнимую часть функции Грина, непосредственно связанную с плотностью состояний, можно приближенно представить в виде совокупности осцилляторов с некоторым временем жизни т. Соответствующая плотность состояний имеет вид кривой Лоренца с $a \sim 0,04$ для *d*-состояний и $a \sim 0,004$ для *s*- и *p*-состояний. Отсюда ошибка в определении коэффициентов функции Грина оказывается незначительной для T_{2g} - и E_{g} -компонент (*d*-состояния) и не превышает 1% для A_{1g} - и T_{1u} -компонент (*s*- и *p*-состояния). Вариация энергии обрезания подтверждает, что точность определения действительной части коэффициентов функции Грина не хуже 5 $\cdot 10^{-3}$ Ry⁻¹, что вполне приемлемо для дальнейших расчетов с использованием этих коэффициентов.

Итак, в настоящей работе показано, что ограничение точности преобразования Крамерса—Кронига во многом обусловлено недоступностью физической информации о преобразуемой функции при больших значениях аргумента. Показана эффективность преобразования Крамерса—Кронига методом быстрого преобразования Фурье, а также даны критерии оценки точности результатов.

ЛИТЕРАТУРА

[1] Кгатегь Н. А.//Atti Congr. Inten. Fis. Como. 1927. V. 2. Р. 545. [2] Кгопід R.//J. Opt. Soc. Ат. 1926. 12, N 6. Р. 547. [3] Диткин В. А., Прудников А. П. Интегральные преобразования и операционное исчисление. М., 1974. [4] Брычков Ю. А., Прудников А. П. Интегральные преобразования обобщенных функций. М., 1977. [5] Ландау Л. Д., Лифшиц Е. М. Электродинамика сплошных сред. М., 1959. [6] Коггіпда Ј.//Physica. 1947. 13. Р. 392. [7] Коһп W., Rostoker N.//Phys. Rev. 1954. 94, N 5. Р. 1111. [8] Родіоцску R., Zeller R., Dederichs P. H.//Phys. Rev. 1980. B22, N 12. Р. 5777. [9] Maksimov E. G., Mazin I. I., Rashkeev S. N., Uspenski Yu. A.//J. Phys. F. 1988. 18, N 4. P. 833.

Поступила в редакцию 13.03.89

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 2

УДК 527.226.33

ФЕНОМЕНОЛОГИЧЕСКАЯ МОДЕЛЬ ФАЗОВЫХ ПЕРЕХОДОВ В СЕГНЕТОЭЛЕКТРИЧЕСКИХ КВАСЦАХ

С. В. Павлов

(кафедра физики кристаллов)

Предложена феноменологическая модель описания фазовых переходов в сегнетоэлектрических квасцах. Показано, что аномалия диэлектрической проницаемости в МАСД при 145 К обусловлена фазовым переходом в поле спонтанной поляризации, происходящим в результате взаимодействия коллинеарных дипольных подсистем. Объяснены некоторые особенности диэлектрической проницаемости квасцов при наложении внешних воздействий.

Из семейства сегнетоэлектрических квасцов наиболее полно, повидимому, исследованы алюмометиламмониевые квасцы (МАСД) [1— 7]. Кристаллы МАСД испытывают при 177 К фазовый переход (ФП) первого рода и проявляют при этом необычные свойства. А именно, температурный ход диэлектрической проницаемости є сильно зависит от внешних воздействий — электрического поля, мсханических напряжений, γ -облучения, а также от толщины образца [1—3]. Причем в парафазе зависимость $\varepsilon(T)$ не изменяется при любых воздействиях, при некотором пороговом значении внешних воздействий ε испытывает скачок вниз в точке ФП, а выше — скачок вверх. Например, в работе [1] показано, что при приложении механического напряжения σ —30 кГ/см² ε испытывает скачок вниз, а при σ >30 кГ/см² — скачок вверх. В работах [4, 5] показано, что скачок ε вверх при 177 К сопровождается дополнительной аномалией при 145 К и объясняется изоструктурным дипольным упорядочением [4]. В работе [5] отмечено, что при скачке ε вниз аномалия при 145 К не наблюдается.

В настоящее время не существует теории, могущей единым образом объяснить такое поведение диэлектрической проницаемости кри-

Рис. 1. Фазовая диаграмма модели (1)

сталлов МАСД. В данной работе предлагается феноменологическая модель поведения квасцов вблизи ФП, описывающая по крайней мере некоторые особенности температурной зависимости є и ее зависимости от внешних воздействий в кристаллах МАСД.

Поскольку МАСД имеет довольно сложную структуру и сетку водородных связей, то при построении модели будем считать, что в квасцах существуют две полярные взаимодействующие подсистемы. Симметрия парафазы МАСД — кубическая, с пространственной группой РаЗ [4], следовательно, параметры (поляризации порядка подсистем) будут трехкомпонентными. Из экспериментальных данных [1-5] следует, что в сегнетофазе наблюдается одна компонента поляризации. В этом случае можно применить метод эффективно-

го потенциала [8], и разложение термодинамического потенциала проводить только по одной компоненте параметра порядка.

Однако при разложении потенциала по двум взаимодействующим однокомпонентным параметрам порядка остается открытым вопрос о том, какие члены разложения необходимо и достаточно учесть для адекватного описания поведения исследуемой системы. В самом деле, какие инварианты 4-й степени нужно учитывать, если их в разложении пять, а инвариантов 6-й степени — семь?

Произвол в выборе вида разложения термодинамического потенциала полностью устраняется, если построение модели проводить не только посредством теоретико-группового анализа, но и методами теории катастроф [9] с использованием min-функций [10]. Такой анализ дает однозначный ответ на вопрос о том, какие инварианты в разложении термодинамического потенциала существенны для описания фазовых переходов в данной системе, а какие — нет. Для описания фазовых переходов в квасцах подходит min-функция $W_{1,0}$ [10], и разложение термодинамического потенциала будет иметь вид

82

$$\Phi = \Phi_0 + \frac{1}{2} (aP_1^2 + bP_2^2) + \gamma P_1 P_2 + \frac{1}{4} (dP_1^4 + cP_2^4) + \frac{1}{2} kP_1^2 P_2^2 + \frac{1}{2} \varkappa P_1^4 P_2^2 + \delta P_1^3 P_2 + \frac{1}{6} f P_1^6, \qquad (1)$$

где P_1 и P_2 — параметры порядка, т. е. спонтанные поляризации подсистем, c, f, \varkappa и k положительны, d < 0.

Модель (1) имеет две устойчивые фазы: парафазу $P_1=P_2=0$ и сегнетофазу $P_1\neq 0$, $P_2\neq 0$. Для более детального изучения фазовой диаграммы предположим временно $\gamma=0$ и $\delta=0$. Смысл такого предположения будет ясен позже. При таких условиях модель (1) допускает существование четырех устойчивых фаз — парафазы ($P_1=0$, $P_2=0$) и трех сегнетофаз: (1) $P_1\neq 0$, $P_2=0$; (II) $P_1=0$, $P_2\neq 0$; (III) $P_1\neq 0$; $P_2\neq 0$. Фазовая диаграмма модели в координатах a-b изображена на рис. 1. Область парафазы, обозначенная на рис. 1 нулем, имеет фазовые границы a=0 и b=0. Область устойчивости сегнетофазы I ограничена кривой I ФП 1-го рода, описываемой формулами $a=d^2/(4f)$ справа от точки A и $(fb-\varkappa a)^2 + \varkappa bd^2 + a(fk^2-k\varkappa d) - kfbd=0$ слева от точки A. Координаты точки A: $a=d^2/(2f)$, $b=(2kfd-\varkappa d^2)/(4f^2)$.

Область устойчивости фазы II заключена между двумя полупрямыми, выходящими из начала координат: b=0 и a=(k/c)b (кривая 2 на рис. 1). Это границы ФП 2-го рода. Наконец, фаза III существует между полупрямой 2 и нижней ветвью полукубической параболы $4\delta^3a_1 + 36\varkappa^2\Delta\delta a_1 - 8\Delta^3\varkappa^2 - (\delta\Delta)^2 + 108\varkappa^4a_1^2 = 0$, где $a_1=ac+bk$, $\delta==cf-3\varkappa k$, $\Delta=cd-2\varkappa b-k^2$ (кривая 3 на рис. 1). Метастабильные области сосуществования фаз ограничены: 0—I — полупрямой a=0 и кривой 1, I—II — кривыми 1 и 2, I—III — кривыми 2 и 3.

Спонтанная поляризация находится из уравнений $\partial \Phi / \partial P_1 = 0$ и $\partial \Phi / \partial P_2 = 0$. В сегнетофазе I

$$P = P_1 = \left(-\frac{d}{2f} + \sqrt{\frac{d^2}{4f^2} - \frac{a}{f}} \right)^{1/2}$$

в сегнетофазе II $P = P_2 = \sqrt{-b/c}$ и в сегнетофазе III $P = P_1 + P_2$, где $P_1 -$ действительный корень уравнения $2\varkappa^2 P_1^6 - \delta P_1^4 - \Delta P_1^2 - a_1 = 0$, а $P_2^2 = -(1/c)$ ($\varkappa P_1^4 + kP_1^2 + b$). Диэлектрическая проницаемость в парафазе $\varepsilon = 1 + (1/\varepsilon_0) (1/a + 1/b)$ в сегнетофазе I

$$\varepsilon = 1 + \frac{1}{\varepsilon_0} \left(\frac{1}{4!P^4 + 2dP^2} + \frac{1}{\varkappa P^4 + kP^2 + b} \right),$$

в сегнетофазе II

$$\varepsilon = 1 + \frac{1}{\varepsilon_0} \left(\frac{1}{a - kb/c} - \frac{1}{2b} \right),$$

в сегнетофазе III

$$\varepsilon = 1 + \frac{1}{\varepsilon_0 \det ||\Phi_{ij}||} (\Phi_{xx} + \Phi_{yy} - 2\Phi_{xy}),$$

где

$$\begin{split} \Phi_{xx} &= 4f P_1^4 + 2dP_1^2 + 4\varkappa \ (P_1P_2)^2, \ \Phi_{yy} = 2cP_2^2, \\ \Phi_{xy} &= 4\varkappa P_1^3 P_2 + 2kP_1P_2, \ \det ||\Phi_{ij}|| = \Phi_{xx}\Phi_{yy} - \Phi_{xy}^2. \end{split}$$

83

Если коэффициенты а и b линейно зависят от температуры: $a = a'(T-T_1)$ и $b=b'(T-T_2)$, a'>0, b'>0, то термодинамический путь на фазовой диаграмме (рис. 1) будет изображаться прямой линией, например aa'. Для термодинамического пути aa' система, описываемая моделью (1), будет испытывать $\Phi\Pi$ 1-го рода, что и наблюдалось в большинстве экспериментов с квасцами [1, 5–7]. На рис. 2 изображена теоретическая зависимость $\varepsilon(T)$, рассчитанная для термодинамического

пути αα' (кривая 1), которая имеет характерный для ФП 1-го рода скачок є вниз.

Рассмотрим теперь влияние на поведение системы, описываемой моделью (1), механического напряжения, например одноосного сжатия вдоль полярной оси X_1 . В разложение (1), следовательно, добавляются члены $P_1^2 \sigma_{11} Q_{11}^{(1)}$ и $P_2^2 \sigma_{11} Q_{11}^{(2)}$, где σ_{11} компонента тензора напряжений. $Q_{11}^{(i)}$ — коэффициенты электрострикции дипольных подсистем. Формально введение членов, учитывающих электрострикционное взаимодействие параметров порядка с внешним механическим напряжением, означает замену в (1) $a \rightarrow a + \sigma_{11}Q_{11}^{(1)}, b \rightarrow b + \sigma_{11}Q_{11}^{(2)}, b \rightarrow b + \sigma_{11}Q_{11}^{(2$ что приводит к параллельному

Рис. 2. Диэлектрическая проницаемость МАСД. Кривые — теоретические зависимости, полученные из модели (1), точки — экспериментальные данные работ [4, 5]

перемещению термодинамического пути на фазовой диаграмме, например влево от $\alpha \alpha'$ к $\beta \beta'$. На рис. 1 видно, что после того, как термодинамический путь окажется левее начала координат, он уже будет описывать другую последовательность ФП, а именно, ФП 1-го рода и два ФП 2-го рода. Причем ФП 1-го рода и один из ФП 2-го рода могут температуре. Дакой лежать очень близко по лублет ФП приводит к тому, что на кривой є наблюдается скачок вверх (что характерно для ФП 2-го рода) и дополнительная аномалия в neред скачком вверх, наблюдавшаяся экспериментально в работах [1, 3], где предполагалось, что эта дополнительная аномалия отвечает дополнительному ФП. Модель (1) полностью подтверждает это предположение. В самом деле, сначала происходит ФП 1-го рода и начинается скачок вниз, но близко лежащий по температуре ФП I→II 2-го рода заставляет в скачком возрасти. Пересечению термодинамического пути с прямой 2 на фазовой диаграмме соответствует ФП, который и наблюдался в [4, 5] при 145 К. Заметим, что для пути аа' этой аномалии не должно быть, как и следует из [4, 5].

Но по модели (1) при 145 К имеет место $\Phi\Pi$ 2-го рода, следовательно, в этой точке $\epsilon \rightarrow \infty$. В эксперименте [4, 5] этого не наблюдалось. Все дело в том, что ФП при 145 К происходит в поле спонтанной поляризации [11]. Учет этого обстоятельства обеспечивается добавлением в (1) члена $\gamma P_1 P_2$. Член $\delta P_1{}^3P_2$ имеет тот же физический смысл, но более высокий порядок малости, и поэтому его можно не учитывать. При наличии в (1) поля спонтанной поляризации температурная зависимость є будет иметь вид кривой 2 на рис. 2, что удовлетворительно согласуется с экспериментальными результатами. Значения коэффициентов в (1) следующие: $a'=3,3\cdot10^8$ В·м/(Кл·К); $b'=6,9\cdot10^{11}$ В·м/(Кл·К); $T_1=176,2$ K; $T_2=176,84$ K; $k=7,63\cdot10^{13}$ В·м⁵/Кл³; $c=1,62\cdot10^{17}$ В·м⁵/Кл³; $q=-7,8\cdot10^6$ В·м/Кл.

Особо отметим, что, введя в (1) член $\gamma P_1 P_2$, мы уже не можем формально рассматривать аномалию при 145 К как ФП. Однако проведенный выше анализ модели (1) позволил понять физическую сущность возникающей аномалии как ФП в поле спонтанной поляризации. Такое же замечание следует сделать и относительно дублета ФП. Тем не менее для термодинамического пути $\alpha \alpha'$ учет поля спонтанной поляризации не нужен, поскольку в этом случае работает только одна дипольная подсистема.

Таким образом, модель (1) с учетом поля спонтанной поляризации позволяет объяснить по крайней мере некоторые особенности поведения диэлектрической проницаемости в кристаллах МАСД.

Автор благодарит Н. Д. Гаврилову и А. М. Лотонова за советы и замечания, сделанные в ходе подготовки статьи.

ЛИТЕРАТУРА

[1] Магатаев В. К. и др.//Кристаллография. 1983. 28, № 6. С. 1214. [2] Гаврилова Н. Д. и др.//Кристаллография. 1987. 32, № 3. С. 708. [4] Гаврилова Н. Д., Козлова Ю. П.//Вестн. Моск. ун-та. Физ. Астрон. 1986. 27, № 5. С. 93. [5] Козлова Ю. П.//Вестн. Моск. ун-та. Физ. Астрон. 1986. 27, № 5. С. 93. [5] Козлова Ю. П.//Автореферат дис. ... канд. физ. мат. наук. М. (МГУ), 1986. [6] Зайцева М. П. и др.//Изв. АН СССР, сер. физ. 1965. 29, № 6. С. 914. [7] Александров К. С. и др.//Там же. 1975. 39, № 5. С. 939. [8] Гуфан Ю. М.// //Структурные фазовые переходы. М., 1982. [9] Гилмор Р.//Прикладная теория катастроф. М., 1984. [10] Васильев В. А.//Функциональный анализ и его приложения. 1977. 11, № 3. С. 1. [11] Гаврилова Н. Д.//ФТТ. 1987. 29, № 1. С. 223.

Поступила в редакцию 13.03.89