ролева Л. И., Павлов В. Ю., Темирязев А. Г.//ФТТ. 1982. 24, № 9. С. 2821. [6] Ангепкіеl R. К.//Л. Opt. Soc. Ат. 1971. 61, N 12. Р. 1651. [7] Velicky В.// #/Сzech. J. Phys. 1961. В11, N 8. Р. 787. [8] Королева Л. И., Садыкова Ш. З.// //ФТТ. 1989. 31, № 4. С. 62.

Поступила в редакцию 11.07.89

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 3

УДК 621.315.592

НИЗКОТЕМПЕРАТУРНАЯ РЕЛАКСАЦИЯ В НЕУПОРЯДОЧЕННЫХ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКАХ

И. П. Звягин, А. В. Плюхин

(кафедра физики полупроводников)

Прыжковая релаксация электронов в неупорядоченных органических полупроводниках рассмотрена в рамках модели с диагональным беспорядком. Найдено изменение концентрации электронов на уровне протекания со временем на разных этапах релаксации, исследованы условия перехода от дисперсионного к нормальному (гауссову) переносу и определена зависимость дисперсионного параметра от температуры. и степени беспорядка.

Введение

Совокупность измерений термостимулированных токов, спектровпоглощения и излучения показывает, что переходные процессы в однокомпонентных органических полупроводниках (поливинилкарбазол, антрацен и др.) часто обусловлены прыжковым механизмом и неплохо описываются моделью диагонального беспорядка [1]. В этой модели случайный разброс темпов переходов связан со случайными флуктуациями энергий локализованных состояний, а изменение темпов переходов за счет флуктуаций расстояний между центрами мало. Диагональный беспорядок приводит к дисперсионному переносу, характеристики которого подробно исследовались численными методами (см. обзор [1]).

В настоящей работе мы рассмотрим прыжковую релаксацию неравновесных электронов в системе с диагональным беспорядком. Пусть локальные центры образуют регулярную решетку с периодом *a*, координационным числом *z* и пусть распределение узлов по энергиям определяется плотностью состояний (ПС) ρ(ε). В рамках данной модели естественно учитывать лишь прыжки между соседними центрами; при этом вероятность перехода между состояниями *n* и *m* имеет вид

$$W_{nm} = W_{00} \exp\left\{-\frac{(\varepsilon_n - \varepsilon_m) \vartheta(\varepsilon_n - \varepsilon_m)}{kT}\right\},$$

где $W_0 = W_{00} \exp(-2\gamma a)$, W_{00} — предэкспоненциальный множитель, для простоты полагаемый постоянным, γ — обратный радиус локализации состояний, ε_n и ε_m — энергин центров, а $\vartheta(\varepsilon_n - \varepsilon_m)$ — ступенчатая функция. Рассмотрим случай, когда носители создаются в системе за счет импульсного возбуждения. Релаксация связана с переходами электронов между центрами, приводящими к уменьшению их средней энергии. В отличие от случаев релаксации в условиях проводимости с переменной длиной прыжка [2—5] при больших временах характеристики релаксационных процессов существенно зависят от температуры. В рассматриваемой системе с переходами между ближайшими соседя-

ми существуют центры, все ближайшие соседи которых имеют бо́льшие энергии; такие центры мы будем называть ловушками. Уход из ловушек возможен лишь за счет термоактивированных прыжков, и при T=0 носитель, попавший на ловушку, остается в ней неограниченно долго.

Релаксация при T=0

Рассмотрим вначале релаксацию при T=0, считая, что длительность импульса возбуждения мала по сравнению с W_0^{-1} . В этом случае быстро, за время порядка W_0^{-1} , все носители захватываются на ловушки. Вероятность того, что центр с энергией є является ловушкой, равна $[\Psi(\varepsilon)]^2$, где

$$\Psi(\varepsilon) = \int_{\varepsilon}^{\infty} d\varepsilon' \varphi(\varepsilon'), \qquad (1)$$

 $\varphi(\varepsilon) = N^{-1}\rho(\varepsilon)$ — функция распределения энергий центров, а N — полная их концентрация. Рассмотрим распределение электронов после релаксации, определяемое функцией $n_0(\varepsilon) = \rho(\varepsilon)f_0(\varepsilon)$, где $f_0(\varepsilon)$ — вероятность заполнения электроном состояния с энергией ε . Очевидно, для $n_0(\varepsilon)$ справедливо выражение

$$n_{0}(e) = n_{i}(\varepsilon) \Psi^{z}(\varepsilon) + \sum_{k=1}^{\infty} \int_{\varepsilon}^{\infty} d\varepsilon' n_{i}(\varepsilon') p_{k}(\varepsilon', \varepsilon) \Psi^{z-1}(\varepsilon), \qquad (2)$$

где $n_i(\varepsilon) = \rho(\varepsilon) f_i(\varepsilon)$, $f_i(\varepsilon)$ — начальная (при t=0) вероятность заполнения центра с энергией ε , а $p_k(\varepsilon', \varepsilon) d_{\varepsilon}$ — вероятность перехода с исходного центра ε' на центр с энергией в интервале (ε , $\varepsilon + d\varepsilon$) за k шагов. Поскольку $1 - \Psi^z(\varepsilon')$ есть вероятность того, что центр с энергией ε' не является ловушкой, то

$$p_1(\varepsilon', \varepsilon) = [1 - \Psi^z(\varepsilon')] - \frac{\phi(\varepsilon)}{\Phi(\varepsilon')} \equiv q_z(\varepsilon', \varepsilon), \qquad (3)$$

где $\Phi(\varepsilon) = 1 - \Psi(\varepsilon)$. Начиная со второго шага рассматриваемый центр заведомо имеет один из соседних центров с большей энергией, так что при $k \ge 2$

$$p_{k}(\varepsilon', \varepsilon) = \int_{\varepsilon}^{\varepsilon'} d\varepsilon_{k-1} \int_{\varepsilon_{k-1}}^{\varepsilon'} d\varepsilon_{k-2} \dots \int_{\varepsilon_{2}}^{\varepsilon'} d\varepsilon_{1} q_{z}(\varepsilon', \varepsilon_{1}) q_{z-1}(\varepsilon_{1}, \varepsilon_{2}) \dots q_{z-1}(\varepsilon_{k-1}, \varepsilon).$$

$$(4)$$

С учетом (3) выражение (4) можно записать в следующем виде:

$$p_{k}(\varepsilon', \varepsilon) = q_{z}(\varepsilon', \varepsilon) \int_{\varepsilon}^{\varepsilon'} d\varepsilon_{k-1} \int_{\varepsilon_{k-1}}^{\varepsilon'} d\varepsilon_{k-2} \dots \int_{\varepsilon_{z}}^{\varepsilon'} d\varepsilon_{1} q_{z-1}(\varepsilon_{1}) q_{z-1}(\varepsilon_{2}) \dots q_{z-1}(\varepsilon_{k-1}) =$$

$$= q_{z}(\varepsilon', \varepsilon) \frac{1}{(k-1)!} \left[\int_{\varepsilon}^{\varepsilon'} dx q_{z-1}(x) \right]^{k-1}, \qquad (5)$$

85

где $q_z(\varepsilon) = q_z(\varepsilon, \varepsilon)$. Подставляя (5) в (2), выполняя суммирование и переходя к функции распределения, получаем

$$f_0(\varepsilon) = f_i(\varepsilon) \Psi^z(\varepsilon) + \int_{\varepsilon}^{\infty} d\varepsilon' f_i(\varepsilon') q_z(\varepsilon') \exp\left\{\int_{\varepsilon}^{\varepsilon'} dx q_{z-1}(x)\right\} \Psi^{z-1}(\varepsilon).$$
(6)

Рассмотрим случай однородного начального распределения $f_i = n/N$, где N — полная концентрация возбужденных носителей. Воспользовавшись тождеством

$$q_{z}(\varepsilon) = q_{z-1}(\varepsilon) + \varphi(\varepsilon) \Psi^{z-1}(\varepsilon), \qquad (7)$$

вытекающим из (3), получим из (6) в рассматриваемом случае следующее выражение для $f_0(\varepsilon)$:

$$f_0(\varepsilon) = \frac{2n}{N} \Psi^{z-1}(\varepsilon) \int_{\varepsilon}^{\infty} d\varepsilon' \, \varphi(\varepsilon') \exp\left\{ \int_{\varepsilon}^{\varepsilon'} dx \, q_{z-1}(x) \right\}.$$

Применяя при интегрировании функции $q_{z-1}(x)$ соотношение (7) z—2 раз, получим

$$f_0(\varepsilon) = \frac{2n}{N} \Psi^{z-1}(\varepsilon) \exp\left\{\sum_{k=1}^{z-1} \frac{\Psi^k(\varepsilon)}{k}\right\} \int_0^{\Psi(\varepsilon)} dx \exp\left\{-\sum_{k=1}^{z-1} \frac{x^k}{k}\right\}.$$
 (8)

В частности, для квазиодномерной (z=2) структуры имеем

 $f_0(\varepsilon) = (2n/N) \Psi(\varepsilon) [\exp{\{\Psi(\varepsilon)\}} - 1].$

Как видно из (8) и (1), функция $f_0(\varepsilon)$ имеет ступенчатый вид, причем крутизна ступеньки растет с ростом *z*. При больших ε функция $f_0(\varepsilon)$ мала и ведет себя как $(2n/N) \Psi^2(\varepsilon)$, а при $\varepsilon \to -\infty$ асимптотически стремится к постоянному значению:

$$f_0(\varepsilon) \approx \frac{2n}{N} \int_0^1 dx \exp\left\{\sum_{k=1}^{z-1} \frac{1-x^k}{k}\right\} \approx cz \frac{n}{N},$$

где $c \approx 1,7$ и слабо меняется с z.

Релаксация при конечных температурах

В этом случае релаксация проходит в два этапа. Сначала быстро, за время порядка W_0^{-1} , устанавливается распределение $f_0(\varepsilon)$, соответствующее захвату всех носителей на ловушки. Дальнейшая релаксация связана с термической активацией носителей. Заметим, что кинетика опустошения ловушек существенно зависит от их энергии. Рассмотрим вначале ловушки, расположенные в высокоэнергетическом хвосте ПС. Носитель уходит из такой ловушки на более глубокий центр за время t в случае, если у центра-ловушки найдется такой ближайший сосед, что соответствующая вероятность перехода удовлетворяет условию

$$W_0 \exp\left\{-\frac{\Delta\varepsilon}{kT}\right\} > t^{-1}.$$

Поэтому функция распределения в этой области энергий имеет вид

$$f(\varepsilon, t) = f_0(\varepsilon) \left\{ \frac{\Psi(\varepsilon + kT \ln W_0 t)}{\Psi(\varepsilon)} \right\}^2.$$
(9)

В частности, для экспоненциального хвоста ПС

$$\rho(\varepsilon) = \rho_0 \exp\left\{-\frac{\varepsilon - \varepsilon_1}{\varepsilon_0}\right\}$$

из (9) получим

 $f(\varepsilon, t) = f_0(\varepsilon) (W_0 t)^{-zkT/\varepsilon_0}$

Таким образом, заселенность состояний, для которых выполняется условие $(\epsilon - \epsilon_1)/\epsilon_0 \gg 1$, убывает со временем по степенному закону с показателем степени zkT/ϵ_0 .

Рассмотрим теперь ловушки из низкоэнергетического хвоста ПС. Релаксационный переход из состояния с энергией є в состояние с меньшей энергией связан с пространственным переносом на расстояние $R \sim [N\Phi(\varepsilon)]^{-1/3}$. Поскольку величина R быстро убывает с уменьшением энергии, естественно предположить, что релаксация в этой области энергий определяется термической активацией на уровень ε_h , близкий к уровню протекания в задаче о проводимости на постоянном токе (ситуация здесь аналогична той, которая имеет место для релаксации путем прыжков переменной длины [2-4]). До момента времени t успевают происходить активационные переходы на уровень ε_h из всех состояний, энергии которых лежат выше демаркационного уровня

 $\varepsilon_d(t) = \varepsilon_h - kT \ln W_0 t$,

т. е. к моменту t происходит термализация заселенностей уровней с $\varepsilon > \varepsilon_d(t)$. Соответственно, для хвоста ПС, спадающего не быстрее, чем по экспоненциальному закону, основная часть носителей расположена в области энергий в окрестности $\varepsilon_d(t)$, а концентрация носителей n_h с энергиями, превышающими ε_h , равна

$$\frac{n_h}{n} = \frac{\rho(\varepsilon_h)}{\rho(\varepsilon_d(t))} \exp\left\{-\frac{\varepsilon_h - \varepsilon_d(t)}{kT}\right\}.$$
(10)-

Для экспоненциальной ПС

$$\rho(\varepsilon) = \rho_0 \exp\left\{-\frac{\varepsilon_1 - \varepsilon}{\varepsilon_0}\right\}$$

при $a = kT/\epsilon_0 < 1$ из (10) получаем

$$n_h/n \approx (W_0 t)^{-(1-\alpha)}.$$

Для ПС, спадающей быстрее, чем экспоненциально, ситуация отличается от описанной выше. Для определенности рассмотрим гауссову ПС

$$\rho(\varepsilon) = \frac{N}{\sqrt{\pi} \varepsilon_0} \exp\left\{-\left(\frac{\varepsilon - \varepsilon_1}{\varepsilon_0}\right)^2\right\},\,$$

где є₀ — параметр хвоста. Асимптотически при больших *t* условиенормировки

$$\int_{-\infty}^{\infty} d\varepsilon \,\rho\left(\varepsilon\right) \exp\left\{-\frac{\varepsilon-\mu}{kT}\right\} = n$$

87

дает

$$\exp\left\{\frac{\mu}{kT}\right\} = \frac{n}{N} \exp\left\{-\frac{\epsilon_1}{kT} - \left(\frac{\epsilon_0}{2kT}\right)^2\right\}$$

(нетрудно показать, что возможные эффекты насыщения глубоких состояний хвоста здесь не играют роли). Таким образом, функция

$$f(\varepsilon)\rho(\varepsilon) = \frac{n}{\sqrt{\pi}\varepsilon_0} \exp\left\{\frac{\varepsilon_1 - \varepsilon}{kT} - \left(\frac{\varepsilon_0}{2kT}\right)^2 - \left(\frac{\varepsilon_1 - \varepsilon}{\varepsilon_0}\right)^2\right\}$$

имеет максимум при $\varepsilon_{\max} = \varepsilon_1 - \varepsilon_0/2\alpha$, где $\alpha = kT/\varepsilon_0$. При $\varepsilon_d(t) > \varepsilon_{\max}$ основная часть электронов имеет энергии, близкие к $\varepsilon_d(t)$, и перенос носит дисперсионный характер. В этом случае, при $t \ll t_1$, где $t_1 = W_0^{-1} \times \exp\{-\beta/\alpha + 1/2\alpha^2\}$, справедливо соотношение (10). Для задачи с диагональным беспорядком нетрудно оценить положение порога протекания, воспользовавшись, например, критерием связей [6]; при z=6 имеем $\beta \approx 0.48$. Из (10) следует, что

$$n_h/n \approx (W_0 t)^{-(1-\xi)},$$

где параметр

$$\xi = \alpha (2\beta + \alpha \ln W_0 t)$$

(11)

слабо зависит от времени и $\xi < 1$ при $t < t_1$. При $t > t_1$ отношение n_h/n перестает существенно зависеть от времени, $n_h/n \approx \exp \{-(\varepsilon_h - \varepsilon_{\max})/kT\} \approx (W_0 t_1)^{-1}$ и происходит переход к нормальной (гауссовой) релаксации.

Обсуждение результатов

Таким образом, подход, основанный на зависящей от времени картине связей, позволяет описать основные черты релаксации в системе с диагональным беспорядком в условиях проводимости путем прыжков между ближайшими соседями. Характер релаксации в этом случае оказывается иным, чем в случае прыжковой проводимости с переменной длиной прыжка [2—6]. При T=0 релаксация прекращается за время порядка W_0^{-1} и в дальнейшем происходит лишь за счет термически активированных прыжков на уровень протекания.

Для ПС, убывающей экспоненциально, временное убывание переходного тока, определяемого концентрацией электронов на уровне протекания, имеет дисперсионный характер с обычным дисперсионным параметром $\alpha = kT/\epsilon_0$.

Для ПС, убывающей быстрее, чем по экспоненциальному закону, термически активированная релаксация происходит в два этапа. На первом этапе при $t < t_1$ процесс имеет дисперсионный характер; для гауссовой ПС $t_1 = W_0^{-1} \exp\{(1-2\alpha\beta)/2\alpha^2\}$, а дисперсионный параметр дается выражением (11). При $t > t_1$ происходит переход к нормальному процессу. Отметим, что фактически первый этап релаксации реализуется лишь при достаточно малых значениях α ; при $\alpha \ge 1$ имеем $t_1 \sim W_0^{-1}$ и процесс имеет нормальный (гауссов) характер практически во всей области термоактивированной релаксации.

Соотношение (11) устанавливает зависимость дисперсионного параметра ξ от отношения ε_0/kT , т. е. от температуры и степени беспорядка. В области, где применим описанный выше анализ (при малых α), зависимость ξ от ε_0/kT удовлетворительно согласуется с результатами численных расчетов, приведенных в работе [1].

ЛИТЕРАТУРА

[1] Bässler H.//Phys. Stat. Sol. (b). 1981. 107. Р. 9. [2] Молгое D.//Phys. Rev. Left. 1985. 54. Р. 146. [3] Звягин И. П.//Некристаллические полупроводники-89. Ужгород, 1989. Т. 2. С. 13. [4] Zvyagin I. Р.//Phys. Stat. Sol. (b). 1989. 152. Р. 231. [5] Барановский С. Д., Фрицше Х., Левин Е. И. и др.//ЖЭТФ. 1989. 96, № 10. С. 1362. [6] Бонч-Бруевич В. Л. и др. Электронная теория неупорядоченных полупроводников. М., 1981.

Поступила в редакцию 31.01.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 3

КРАТКИЕ СООБЩЕНИЯ

ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

УДК 539.123

ПЕРЕНОРМИРУЕМАЯ МОДЕЛЬ МАССИВНЫХ КАЛИБРОВОЧНЫХ ПОЛЕЙ В ПЯТИМЕРНОМ ПРОСТРАНСТВЕ

Д. А. Славнов

(кафедра квантовой теории и физики высоких энергий)

Предложена новая схема описания массивных калибровочных полей, в которой массы индуцируются дополнительными компонентами векторных полей. Рассмотрение проведено на примере калибровочного сектора модели электрослабых взаимодействий.

Недавно в работе [1] для целей перенормировок в квантовой электродинамике было предложено ввести дополнительную пятую ксординату. В настоящей статье мы рассмотрим другой пример использования этой координаты — калибровочный сектор модели электрослабых взаимодействий. Здесь также применима перенормировочная процедура, аналогичная предложенной в [1], но ее описание мы повторять не будем, а сосредоточим внимание на учете симметрии и массивности полей. В отличие от [1] в данной статье используется псевдоевклидова формулировка, связь с евклидовой стандартная (см., напр., [2]).

Коротко об обозначениях. Точки пространства характеризуются пятивекторами $X = (x, \varkappa)$, где x — обычный четырехвектор, а \varkappa — дополнительная компактная пространственноподобная координата. В качестве общего обозначения полей, фигурирующих в модели, будем использовать символ $\Phi_{\sigma}(X)$. Потребуем, чтобы $\Phi_{\sigma}(X)$ были периодическими функциями \varkappa , разложимыми в ряд Фурье:

$$\Phi_{\sigma}(X) = \dot{\Phi}_{\sigma}(x, 0) + \sqrt{2} \sum_{n} [\cos \omega_{n} \varkappa \dot{\Phi}_{\sigma}(x, \omega_{n}) + \sin \omega_{n} \varkappa \dot{\Phi}_{\sigma}(x, \omega_{n})], \quad \omega_{n} =$$

 $=\pi n/l$, n=1, 2...

Далее, введем редуцирующие функции g₆(и) вида

$$g_{\sigma}(\varkappa) = 2^{-1/3} \widetilde{g}_{\sigma}(0) + 2^{7/6} \sum_{n} \widetilde{g}_{\sigma}(\omega_n) \cos \omega_n \varkappa,$$

тде $\tilde{g}_{\sigma}(0), \ \tilde{g}_{\sigma}(\omega_n)$ равны либо 0, либо 1. С помощью $g_{\sigma}(\varkappa)$ построим редуцированные поля

$$\langle \Phi_{\sigma}(X) \rangle = \frac{1}{2l} \int_{-l}^{l} d\varkappa' g_{\sigma}(\varkappa - \varkappa') \Phi_{\sigma}(\varkappa, \varkappa').$$

89