Используя (8) и (2), можно получить соотношение между массой, химическим потенциалом и температурой рассматриваемого газа фермионов. Для простоты учтем только первые два слагаемых, стоящие в правой части уравнения (8). Подставляя их в (2), получим

$$\mu = \frac{1}{2} \frac{m^3}{m_0^2} \left[\left(\frac{m_0}{m} \right)^4 + 1 \right] + \frac{\mu \beta}{4} \frac{m^3}{m_0^2} \left[\left(\frac{m_0}{m} \right)^4 - 1 \right] \ln \left| \frac{\mu}{m} + \sqrt{\left(\frac{\mu}{m} \right)^2 - 1} \right| + O\left(\beta \mu m \ln \frac{\mu}{m} \right).$$

Полученное выражение описывает химический потенциал фермионного газа при высоких плотностях и температурах. В данном выражении следует отметить наличие члена, не зависящего от температуры. Укажем, что аналогичная ситуация имеет место и в низкотемпературном пределе для релятивистского электронного газа в однородном постоянном магнитном поле [7].

ЛИТЕРАТУРА

[1] Gross D. J., Neveu A.//Phys. Rev. 1974. D10, N 10. P. 3235. [2] Nambu Y., Jona-Lasinio G.//Phys. Rev. 1961. 122. Р. 345. [3] Trem1 T. F.//Phys. Rev. 1989. D39, N 2. P. 679. [4] Абрикосов А. А., Горьков Л. П., Дзялошинский И. Е. Методы квантовой теории поля в статистической физике. М., 1962. С. 443. [5] Bernard C. W.//Phys. Rev. 1974. D9, N 12. P. 3312. [6] Вшивцев А. С., Перес-Фернандес В. К.//ДАН СССР. 1989. 309, № 1. С. 70. [7] Вшивцев А. С., Магницкий Б. В., Маслов И. Н. и др.//Астрон. журн. 1989. 66, № 3. С. 489.

> Поступила в редакцию-29.01.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31. № 4

УДК 539.12.01

ДИССОЦИАЦИЯ КВАРКОНИЯ В КВАРК-ГЛЮОННОЙ ПЛАЗМЕ

Р. Н. Фаустов, И. Г. Василевская

(кафедра квантовой статистики и теории поля)

В ряде экспериментов наблюдалось подавление рождения чармония J/ψ при столкновениях тяжелых ионов. Этот эффект может быть следствием образования кварк-глюонной плазмы, столкновений чармония с адронами, ядерных эффектов поглощения. В связи с этим представляет интерес диссоциация кваркония в кварк-глюонной плазме. В работе проведены расчеты для процессов J/ψ+g-+c+c и $\Upsilon + g \rightarrow b + \bar{b}$ при различных температурах.

Эффект подавления рождения *J*/ψ-частиц при столкновениях тяжелых ионов был предсказан в работе [1] как следствие образования кварк-глюонной плазмы.

Критическая температура перехода в фазу деконфайнмента оценивается следующим образом: $140 < T_c < 250$ МэВ [2]. Предполагается, что при температурах, превышающих критическую, потенциал взаимодействия между кварками имеет вид экранированного кулоновского потенциала:

$$V(r, T) = -\frac{4\alpha_{\rm s}}{3r} \exp\{-\mu(T)r\},\$$

25

где дебаевское экранирование определяется величиной [3]

$$\mu(T) = \sqrt{1 + \frac{N_f}{6}} Tg(T).$$

Существование связанного состояния J/ψ возможно до температуры $T_{c_i} > T_c$ [4, 5]. В работе [3] отмечается возможность диссоциации J/ψ при температурах ниже T_c , что обусловлено кинематическими эффектами. Энергия диссоциации понижается при увеличении температуры; при температуре T_c энергия диссоциации $E_{dis}=0$ [3].

Как предполагается, для деконфайнмента необходимо, чтобы плотность материи и плотность энергии значительно превышали нормальные значения этих величин (в 5—20 раз).

В экспериментах группы NA-38 наблюдалось подавление рождения чармония J/ψ при столкновениях ¹⁶О—²³⁸U с энергией 200 ГэВ на нуклон [6].

Механизм рождения чармония в адрон-адронных столкновениях не является окончательно разработанным. Эта проблема была подробно обсуждена в работе [4]. Интерпретация полученных данных неодно-

значна. Экспериментально найденная зависимость подавления рождения чармония от полной передаваемой энергии E_T и импульса p_T может быть объяснена в рамках различных моделей, основанных на следующих механизмах подавления J/ψ :

а) диссоциация чармония в кваркглюонной плазме [4, 5];

б) распад чармония при столкновениях с адронами [7];

в) ядерные эффекты [5, 7].

Вопрос об образовании кварк-глюонной плазмы и о вкладе других возможных механизмов в наблюдавшееся подавление J/ψ остается нерешенным. В связи с этим необходим ряд более точных экспериментов и более подробный анализ теоретических предсказаний. В частности, представляют интерес расчеты ширины распада чармония в модели адронного газа и кварк-глюонной плазмы.

В данной работе рассчитывается ширина распада $J/\psi + g \rightarrow c + \bar{c}$ ³S₁-состояния чармония и ширина распада $\Upsilon + g \rightarrow b + \bar{b}$ ³S₁-состояния боттомония при различных возможных значениях критической температуры T_c и константы сильной связи α_s . Диаграмма этого процесса приведена на рисунке.

Для матричного элемента получаем выражение

$$F^{\tau\rho} = \frac{g}{(2\pi)^{9/2}} \overline{u}^{\tau}(p_1) \left(\frac{\lambda_a}{2} \gamma_{\mu} \Delta(p_1 - k) \Gamma(p_1 - k, p_2) + \Gamma(p_1, p_2 - k) \times \Delta(p_2 - k) \frac{\lambda_a}{2} \gamma_{\mu}\right) v^{\rho}(p_2) G^{\mu}_a(k),$$

где Δ — пропагатор кварка, p_1 — 4-импульс кварка, p_2 — 4-импульс антикварка, k — 4-импульс глюона.

Далее найдем:

$$\sum_{\tau,\rho} \overline{F}_{\tau\rho} F^{\tau\rho} = \frac{g^2}{(2\pi)^9} \frac{1}{16\rho_1^0 \rho_2^0 k^9} \operatorname{Tr} \left[\left\{ \left(\widehat{\rho}_1 + m \right) \gamma_{\mu} \Delta \left(p_1 - k \right) \Gamma \left(\rho_1 - k, \rho_2 \right) \right. \right\} \right]$$

$$\times (\widehat{p_2} - m) \Gamma^* (p_1 - k, p_2) \Delta (p_1 - k) \gamma^{\mu} + \{(\widehat{p_1} + m) \Gamma (p_1, p_2 - k) \Delta (p_2 - k) \times \gamma_{\mu} (\widehat{p_2} - m) \gamma^{\mu} \Delta (p_2 - k) \Gamma^* (p_1, p_2 - k)\} + \{(\widehat{p_1} + m) \gamma_{\mu} \Delta (p_1 - k) \Gamma (p_1 - k, p_2) (\widehat{p_2} - m) \gamma_{\mu} \Delta (p_2 - k) \Gamma^* (p_1, p_2 - k)\} + \{(\widehat{p_1} + m) \Gamma (p_1, p_2 - k) \times \Delta (p_2 - k) \gamma_{\mu} (\widehat{p_2} - m) \Gamma^* (p_1 - k, p_2) \Delta (p_1 - k) \gamma^{\mu}\}],$$

тде $k^0 = |\mathbf{k}|, p_1^0 = \sqrt{|\mathbf{p}|^2 + m^2}, p_2^0 = \sqrt{|\mathbf{p}_2|^2 + m^2}.$ Вершина Г $(p_1, p_2 - k)$ удовлетворяет уравнению

$$\Gamma(p_1, p_2 - k) = \int \frac{d^4s!}{(2\pi)^4} V(q, s; p) \Lambda\left(\frac{p}{2} + s\right) \Gamma\left(\frac{p}{2} + s, \frac{p}{2} - s\right) \Delta\left(\frac{p}{2} - s\right),$$
(1)

тде $p = p_1 + p_2 - k$, $q = (p_1 + k - p_2)/2$.

Двухвременная волновая функция связана с вершиной Г соотношением

$$\psi_p(s) = \Delta(p/2 + s) \Gamma(p/2 + s, p/2 - s) \Delta(p/2 - s).$$

Одновременная волновая функция в импульсном представлении яводится следующим образом:

$$\Psi_{p}(s) = \int_{-\infty}^{+\infty} \frac{ds^{\bullet}}{2\pi} \Psi_{p}(s) = \int \frac{ds^{\bullet}}{2\pi} \Delta\left(\frac{p}{2} + s\right) \Gamma\left(\frac{p}{2} + s, \frac{p}{2} - s\right) \Delta\left(\frac{p}{2} - s\right).$$
(2)

Предполагая, что взаимодействие является мгновенным, т. е. V вне зависит от нулевых компонент относительных 4-импульсов, можно преобразовать уравнение (1), используя выражение (2).

В итоге получим

$$\Gamma(p_1, p_2-k) = \int \frac{d^3s}{(2\pi)^3} V(\mathbf{q}, s; p) \psi_p(s).$$

Теперь воспользуемся квазипотенциальным уравнением [8] в системе центра масс:

$$(M-2V|\mathbf{q}|^{2}+m^{2})\psi(\mathbf{q}) = \frac{l}{(2\pi)^{3}}\int d^{3}\mathbf{s}V(\mathbf{q}, \mathbf{s}; p)\psi_{\rho}(\mathbf{s}),$$

тде q=p₁=--p₂+k, М — масса исходной частицы. Получаем

получаем

$$\Gamma(p_1, p_2 - k) = (M - 2\sqrt{|\mathbf{p}_1|^2 + m^2}) \psi(\mathbf{p}_1).$$

Аналогично

$$\Gamma(p_2, p_1 - k) = (M - 2\sqrt{|\mathbf{p}_2|^2 + m^2}) \psi(\mathbf{p}_2).$$

Последующие вычисления показывают, что основной вклад дает скалярная часть волновой функции, т. е. $\psi_{\alpha\beta} = \psi_s \delta_{\alpha\beta}$. Так как мы рассчитываем ширину распадов ${}^{3}S_1$ -состояний чармония и боттомония, то $\psi_s(\mathbf{q}) = \psi_s(|\mathbf{q}|)$. Таким образом,

$$\begin{split} \sum_{\mathbf{r},\mathbf{p}} F_{\mathbf{r}\mathbf{p}} F^{\mathbf{r}\mathbf{p}} &= \frac{g^2}{(2\pi)^9} \frac{1}{16k^9 p_1^0 p_2^0} \left[\frac{(M-2\sqrt{|\mathbf{p}_2|^2+m^2})^2}{((p_1-k)^2-m^2)^2} \psi^2(|\mathbf{p}_2|) \times \right. \\ &\times \operatorname{Tr} \left\{ (\widehat{p}_2-m) \left(\widehat{p}_1-\widehat{k}+m \right) \gamma_{\mu} \left(\widehat{p}_1+m \right) \gamma^{\mu} \left(\widehat{p}_1-\widehat{k}+m \right) \right\} + \\ &+ \frac{(M-2\sqrt{|\mathbf{p}_1|^2+m^2})^2}{((p_2-k)^2-m^2)^2} \psi^2(|\mathbf{p}_1|) \operatorname{Tr} \left\{ (\widehat{p}_2-m) \gamma_{\mu} \left(\widehat{p}_2-\widehat{k}-m \right) \left(\widehat{p}_1+m \right) \times \right. \\ &\times \left(\widehat{p}_2-\widehat{k}-m \right) \gamma^{\mu} \right\} - \frac{(M-2\sqrt{|\mathbf{p}_1|^2+m^2}) (M-2\sqrt{|\mathbf{p}_2|^2+m^2})}{((p_1-k)^2-m^2)} \psi_4^7(|\mathbf{p}_1|) \times \\ &\times \psi(|\mathbf{p}_2|) \left\{ \operatorname{Tr} \left\{ \left(\widehat{p}_2-m \right) \gamma_{\mu} \left(\widehat{p}_2-\widehat{k}-m \right) \left(p_1+m \right) \gamma^{\mu} \left(\widehat{p}_1-\widehat{k}+m \right) \right\} + \\ &+ \operatorname{Tr} \left\{ \left(\widehat{p}_2-m \right) \left(\widehat{p}_1-\widehat{k}+m \right) \gamma_{\mu} \left(\widehat{p}_1+m \right) \left(\widehat{p}_2-\widehat{k}-m \right) \gamma^{\mu} \right\} \right\} \right] = \\ &= \frac{g^2}{4 (2\pi)^9 p_1^0 p_2^0 k^0 M^2} \left\{ \psi^2(|\mathbf{p}_2|) \left\{ 2m^2 \left(4m^2+M^2-4M\sqrt{|\mathbf{p}_2|^2+m^2} \right) + \\ &+ M^2 \left(2\sqrt{|\mathbf{p}_1|^2+m^2}-M \right) \left(2\sqrt{|\mathbf{p}_2|^2+m^2}-M \right) \right\} + \psi^2(|\mathbf{p}_1|) \times \\ &\times \left\{ 2m^2 \left(4m^2+M^2-4M\sqrt{|\mathbf{p}_1|^2+m^2} \right) + M^2 \left(2\sqrt{|\mathbf{p}_1|^2+m^3}-M \right) \times \\ &\times \left\{ 2\sqrt{|\mathbf{p}_2|^2+m^2}-M \right\} + 8\psi(|\mathbf{p}_1|)\psi(|\mathbf{p}_2|) \times \\ &\times \left\{ m^2 \left(p_1 p_2 -m^3 \right) + \left(M\sqrt{m^2+|\mathbf{p}_1|^2}-2m^2 \right) \left(M\sqrt{|\mathbf{p}_2|^2+m^2}-2m^2 \right) \right\} \right\}. \end{split}$$

$$\Gamma = \int d^4 p_1 \int d^4 p_2 \frac{\sum\limits_{\tau,\rho} \overline{F}_{\tau\rho} F^{\tau\rho}}{2M} \,\delta(p_1^2 - m^2) \,\delta(p_2^2 - m^2).$$

При интегрировании по импульсу удобно воспользоваться сферической системой координат. Проинтегрировав по угловым координатам, получим

$$\begin{split} \Gamma &= \frac{a_{S}}{(2\pi)^{8} M^{3}} \int dp_{1} \int dp_{2} \frac{p_{1}^{2} p_{2}^{2}}{\sqrt{p_{1}^{2} + m^{2}} \left(\sqrt{p_{1}^{2} + m^{2}} + \sqrt{p_{2}^{2} + m^{2}} - M\right)} \times \\ &\times \frac{1}{\sqrt{p_{2}^{2} + m^{2}}} \left[\left\{ 2m^{2} \left(4m^{2} + M^{2}\right) + M^{2} \left(2\sqrt{p_{1}^{2} + m^{2}} - M\right) \left(2\sqrt{p_{2}^{2} + m^{2}} - M\right) \right\} \times \\ &\times \left\{ \psi^{2} \left(p_{1}\right) + \psi^{2} \left(p_{2}\right) \right\} - 8Mm^{2} \left\{\sqrt{p_{1}^{2} + m^{2}} \psi^{2} \left(p_{1}\right) + \sqrt{p_{2}^{2} + m^{2}} \psi^{2} \left(p_{2}\right) \right\} + \\ &+ 8\psi \left(p_{1}\right) \psi \left(p_{2}\right) \left\{ m^{2} \left(\sqrt{p_{1}^{2} + m^{2}} \sqrt{p_{2}^{2} + m^{2}} - m^{2}\right) + \\ &+ \left(M\sqrt{m^{2} + p_{1}^{2}} - 2m^{2}\right) \left(M\sqrt{m^{2} + p_{2}^{2}} - 2m^{2}\right) \right\} \right], \end{split}$$

где $p_1 = |\mathbf{p}_1|, p_2 = |\mathbf{p}_2|.$

Как предполагается, массы связанных состояний и массы кварков должны зависеть от температуры. Конкретный вид функциональной зависимости не получен до настоящего времени. В связи с этим полагаем

 $M=2m-\Delta$.

Результаты расчетов ширины распада ${}^{3}S_{1}$ -состояний чармония J/ψ при различных возможных значениях температуры T, константы сильной связи α_{S} , массы *с*-кварка m_{c} , параметра Δ приведены в табл. 1. Аналогичные результаты для ${}^{3}S_{1}$ -состояний боттомония Υ приведены в табл. 2.

Следует ожидать, что значение температуры T_{c_1} для боттомония превышает значение аналогичной величины для чармония. Поэтому мы провели расчеты для более широкого интервала возможных значений температуры T (до 350 МэВ).

гаолица	1
---------	---

	т _с , ГэВ	<i>Т</i> , МэВ	Г, МэВ						
as			Д, ГэВ						
			0,6	0,5	0,1	0,05	0,01	0	
0,255	1,58	200 250 300	5,30 5,13 5,09	5,81 5,63 5,58	9,32 9,02 8,95	10,26 9,94 9.86	11,62 11,26 11,17	12,91 12,51 12,42	
0,375 0,488 0,6	1,4 1,58	250 250	5,03 6,97 8,21 8,99	5,53 7,64 9,01 9,86	8,93 12,27 14,48 15,89	9,83 13,52 15,97 17,54	11,12 15,35 18,15 19,96	12,31 17,06 20,20 22,23	

Значения ширины распада $J/\phi + g \rightarrow c + \overline{c}$

Таблица 2

Значения ширины распада $1 + g \rightarrow b + \overline{b}$

	т _р , ГэВ	Т, МэВ	Г, МэВ						
æs			Δ, ΓэΒ						
			0,6	0,5	0,1	0,05	0,01	0	
0,168	4,85	200 250 300 350	0,63 0,62 0,62 0,61	0,66 0,65 0,65 0,64	1,12 1,11 1,10 1,08	1,25 1,24 1,23 1,22	1,47 1,46 1,45 1,43	1,71 1,69 1,68 1,66	

Мы использовали следующие значения параметров: $a_s = 0,168$; масса *b*-кварка $m_b = 4,85$ ГэВ.

Различие наших результатов и приведенных в табл. З результатов работы [9], где ширина распада чармония рассчитывалась при $T_c=250$ МэВ и $a_s=0,375$; 0,488 и 0,6, объясняется тем, что авторы работы [9] использовали нерелятивистскую потенциальную модель. Мы считаем, что в данном случае необходим учет релятивистских эффектов.

В заключение авторы выражают благодарность В. О. Галкину за обсуждения полученных результатов и содействие при проведении расчетов на ЭВМ.

Таблица З

Значения ширины распада

 $J/\phi + g \rightarrow c + \overline{c}$ при $\Lambda = 0,6$ ГэВ, T = 250 МэВ

α _S	Г, МэВ	Г [9], МэВ			
0,375	6,97	2,3			
0,488	8,21	6,5			
0,6	8,99	12,4			

ЛИТЕРАТУРА

[1] Matsui T., Satz H.//Phys. Lett. 1986. 178B. P. 416. [2] Tannenbaum M.//Nucl. Phys. 1988. A488. P. 511. [3] Karsh F., Mehr M., Satz H.//Z. Phys. C.. 1988. 37. P. 617. [4] Kapusta J.//Phys. Rev. 1988. D36. P. 2857. [5] Satz H./F //Nucl. Phys. 1988. A488. P. 555. [6] Bussiere A.//Z. Phys. C. 1988. 38. P. 117.
[7] Ftácnik J., Lichard P., Pisutová N., Pisút J. Preprint CERN-TH. 5090/88, June 1988. [8] Faustov R. N.//Ann. of Phys. (N. Y.). 1973. 78. P. 176. [9] Hannson T. H., Su H. Lee, Zahed J.//Phys. Rev. 1988. D37. P. 2672.

> Поступила в редакцию» 29.01.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31. № 4

РАДИОФИЗИКА

УДК 621.385

ОПРЕДЕЛЕНИЕ ДИСПЕРСИИ ВОЛН ОТКРЫТЫХ ПЕРИОДИЧЕСКИХ. СТРУКТУР МЕТОДОМ ПРОБНОГО ИСТОЧНИКА

В. И. Канавец, А. И. Слепков, А. В. Федоров

(кафедра радиофизики) –

Изложен метод теоретического определения дисперсии волн в открытых периодических структурах, не требующий решения дисперсионного уравнения. Данный метод может быть использован при рассмотрении физических процессов в системах, характерных для релятивистской СВЧ-электроники.

Наиболее мощные CBЧ-усилители и генераторы на трубчатых релятивистских электронных потоках создаются на основе низкодобротных периодических электродинамических структур с высокой степеньюпространственного развития [1]. Для дальнейшего увеличения мощности и перехода в коротковолновый диапазон необходимо изучитьдисперсию волн в системах с предельно большим диаметром, когда цилиндрическую систему можно считать плоской, и малой высотой неоднородности: $h < \lambda/4$ (λ — длина волны).

Традиционно задача нахождения дисперсионных характеристик сводится к определению собственных значений ω_s оператора Лапласа с учетом условий на границе периодической структуры. Приравнивание нулю детерминанта системы уравнений относительно амплитуд собственных волн приводит к дисперсионному уравнению, решение которогодает искомую зависимость частоты от продольного волнового числа $\omega(k_z)$ [2]. Однако найти дисперсионные характеристики можно посредством изучения реакции системы на возбуждение пробными источниками при следующей постановке задачи.

Пусть периодическая структура представляет собой идеально проводящую поверхность, расположенную в плоскости *уОг*, является однородной в направлении оси *Оу*, имеет период *l* в направлении оси *Ог*. В качестве пробного источника возъмем либо плоскую волну

 $E_z = \exp\{-ik_{z0}x\} \cdot \exp\{ik_{z0}z\},\$

$$k_{x0} = (\omega/c) \cos \alpha, \ k_{z0} = (\omega/c) \sin \alpha,$$

либо промодулированный электронный поток с плотностью тока

 $j_z = \exp\{ik_{z0}z\} \cdot \delta(x-b), k_{z0} = \omega/v_0,$