ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 548:537.611

намагниченность неодим-иттриевых ферритов-гранатов

К. П. Белов, Н. В. Волкова, Л. А. Скипетроза

(кафедра общей физики для естественных факультетов)

В интервале температур от 4,2 К до температуры Кюри изучена намагниченность пяти монокристаллов системы $Nd_xY_{3-x}Fe_5O_{12}$ (x=0,0; 0,5; 0,95; 1,39; 1,72). Из результатов измерений делается вывод, что при гелиевой температуре кристаллографическое направление [110] является направлением легкого, а [111], [100] — промежуточного и трудного намагничивания соответственно. Показано, что согласие экспериментально найденных значений намагниченности с рассчитанными по теории Нееля достаточно хорошее, если предположить, что при температурах ниже 77 К в данных соединениях образуется неколлинеарная магнитная структура.

Намагниченность иттриевых ферритов-гранатов, замещенных ионами Nd³⁺, впервые исследовалась на поликристаллических образцах в работе [1]. При этом было обнаружено, что при температуре жидкого гелия намагниченность достигает насыщения только в полях ~100 кЭ. Магнитный момент при T=0 К оказался значительно меньше теоретической величины, рассчитанной по модели Нееля, предполагающей коллинеарность магнитных подрешеток.

Данная работа проведена с целью выяснения природы этих аномалий. Методом кристаллизации из раствора в расплаве были выращены монокристаллы системы Nd_xY_{3-x}Fe₅O₁₂ (x=0,0; 0,50; 0,95; 1,39; 1,72). Как известно ион Nd³⁺ вследствие своего большого ионного радиуса (0,99 Å) плохо входит в решетку граната и не образует чистого неодимового граната. Состав образцов определялся по поликристаллическому эталону на рентгеновском микроанализаторе. Измерения намагниченности проводились на образцах в форме шариков диаметром 2-4 мм, отклонение формы образцов от сферической не превышало ~0,5%. Образцы ориентировали на рентгеновском дифрактометре УРС-50 с точностью ±1°. Для измерения намагниченности в интервале от 4,2 К до температуры Кюри применялся вибрационный магнитометр. Ошибка измерения составляла примерно 4-6%.

На рис. 1 приведены кривые намагниченности феррита-граната $Nd_{0,95}Y_{2,05}Fe_5O_{12}$ при T=4,2 К вдоль различных кристаллографических направлений. Видно, что направление [110] является направлением легкого намагничивания, а [111] и [100] — направлениями промежуточного и трудного намагничивания. Также видно, что намагниченность достигает насыщения в полях $H \ge 9$ кЭ вдоль всех кристаллографических направлений. Кривые намагниченности для других составов имеют аналогичный вид. На рис. 2 приведены кривые температурной зависимости спонтанной намагниченности σ_s ферритов системы $Nd_xY_{3-x}Fe_5O_{12}$, измеренные вдоль оси [111]. Ниже 30 К величина σ_s незначительно меняется с изменением температуры. В области комнатной температуры значения σ_s исследуемых образцов практически не отличаются от намагниченности насыщения феррита-граната иттрия $Y_3Fe_5O_{12}$.

Из полученных нами экспериментальных результатов следует, что введение ионов Nd³⁺ в феррит-гранат иттрия приводит к увеличению магнитного момента последнего. Это можно объяснить следующим образом. Ион Nd³⁺ является легким редкоземельным ионом, следовательно, его полный момент равен $(L-2S)\mu_B$, где L и S — орбитальное и спиновое квантовые числа. Для иона неодима L=6, S=3/2. Таким образом, орбитальная составляющая магнитного момента больше спиновой и полный момент иона Nd³⁺ направлен параллельно орбитальному. Так как обменное взаимодействие происходит только между спиновыми моментами [2], то антиферромагнитная связь между спинами

Рис. 1. Кривые намагничивания монокристалла феррита-граната Nd0,95Y2.05Fe5O12 вдоль различных направлений при температуре 4,2 К

Рис. 2. Температурные зависимости спонтанной намагниченности для гранатов системы $Nd_xY_{3-x}Fe_5O_{12}$: x=1,72 (1); 1,39 (2); 0,95 (3); 0,50 (4) и 0 (5)

нонов неодима и результирующим спином железных подрешеток приводит к ферромагнитному упорядочению магнитных моментов ионов Nd^{3+} и результирующего момента ионов Fe^{3+} [3, 4]. Этим и объясняется увеличение магнитного момента $Y_3Fe_5O_{12}$ при введении ионов Nd^{3+} .

Экспериментальные значения намагниченности вдоль различных кристаллографических направлений, полученные при 4,2 К экстраполяцией зависимости $\sigma(H)$ к H = 0 (σ_{exp}); значения спонтанной намагниченности, рассчитанные по теории Несля (σ_{0}^{N})

x	$\sigma_{\exp} \left[\mu_B \right]$			$\sigma_0^N \left\{\mu_B\right\}$	σ ^{utns} [μ _B]		
	61113	[110]	[100]		[11]	· [110]	£1003
0,5 0,95 1,39 1,72	11,2 13,0 13,9 14,8	12,6 14,3 14,3 15,9	9,7 13,0 —	13,0 15,7 18,3 20,3	11,25 12,33 13,40 14,21	11,50 12,85 14,17 15,16	11,41 12,69 13,93 14,86

и с учетом образования неколлинеарной магнитной структуры (σ₀^{ums}) для ферритов-гранатов системы Nd_x Y_{3-x}Fe₅O₁₂

В таблице приведены экспериментальные значения намагниченности σ_{exp} ферритов-гранатов $Nd_x Y_{3-x} Fe_5 O_{12}$ вдоль различных кристаллографических направлений, полученные нами при T=4,2 К экстралоляцией $\sigma(H)$ к H=0, а также значения спонтанной намагниченности, рассчитанные по теории Нееля, σ_0^N . При расчете принималось, что магнитные моменты ионов Nd³⁺ и Fe³⁺ равны соответственно Зµ_B и 5µ_B. Из таблицы следует, что теория Нееля дает завышенные значения спонтанной намагниченности ферритов Nd_xY_{3-x}Fe₅O₁₂ по сравнению с экспериментальными результатами.

Из нейтронографических исследований известно, что многие редкоземельные ферриты-гранаты при гелиевых температурах имеют неколлинеарную магнитную структуру [5-7]. Данных о магнитной структуре неодим-иттриевых ферритов-гранатов в литературе нет. Наилучшее согласие экспериментальных значений намагниченности оехр с расчетными достигается, если предположить, что в ферритах-гранатах Nd_xY_{3-x}Fe₅O₁₂ в области гелиевых температур образуется неколлинеар-Nd3+ ная магнитная структура. При этом магнитные моменты ионов направлены вдоль осей типа [110], а магнитные моменты ионов Fe³⁺ в нулевом поле ориентированы вдоль осей типа [111]. В распредполагалось, что магнитные моменты ионов Nd³⁺ жестчетах ко связаны с кристаллографической решеткой. Для проверки этого предположения были проведены измерения намагниченности некоторых ферритов-гранатов исследуемой системы в импульсных магнитных полях до 250 кЭ. Результаты измерений показали, что действительно, магнитные моменты ионов Nd³⁺ нельзя заметным образом вывести из направлений намагничивания [110] с помощью полей порядка 105 Э. Большая магнитная анизотропия ионов Nd³⁺ в соединениях Nd₃Ga₅O₁₂ и Nd₃Sc_{1.35}Fe_{3.65}O₁₂ наблюдалась ранее Неквасилом и другими при исследовании намагниченности в сильных магнитных полях [8, 9].

Известно, что предельно большая магнитная анизотропия некрамерсовских ионов в гранатах (изинговское упорядочение) наблюдается, когда эти ионы имеют нижний изолированный квазидублет [10]. Систему нижних близко расположенных уровней (квазидублет) имеют в ферритах-гранатах ионы Ho³⁺ и Tb³⁺ [11, 12].

Ион Nd³⁺ является крамерсовским. Основное состояние $4I_{9/2}$ кристаллическим полем ромбической симметрии расщепляется на 5 дублетов. Первый возбужденный дублет в гранатах отстоит от основного уровня примерно на 100 см⁻¹ [13]. Расщепление основного дублета Nd³⁺ обменным полем Fe-подрешетки, согласно оценкам авторов работы [14], составляет величину порядка 10÷90 см⁻¹. Таким образом, величины расщепления уровней в обменном и кристаллическом полях сравнимы. Поэтому уровни Nd³⁺ в ферритах-гранатах при определенной ориентации намагниченности могут сильно сближаться или пересекаться. Пересечение уровней приводит к их вырождению и, следовательно, к резкому возрастанию энергии магнитной анизотропин [15].

Известно, что однононный вклад в магнитную анизотропию крамеровских РЗ-ионов с изолированным основным состоянием в первом приближении отсутствует [15]. Отличный от нуля одноионный вклад для этих ионов появляется во втором приближении, если учесть влияние возбужденных уровней. Для крамеровских ионов с изолированным основным состоянием магнитная анизотропия обусловлена обменным взаимодействием между редкоземельной и железной подрешетками. Следовательно, большая магнитная анизотропия ферритов-гранатов Nd_xY_{3-x}Fe₅O₁₂ обусловлена в основном сильным анизотропным обменом между ионами Nd³⁺ и Fe³⁺.

При температурах, отличных от абсолютного нуля, кроме основного уровня будут заселены также и возбужденные уровни иона Nd^{3+} , так как в структуре гранатов нижние энергетические уровни расположены близко друг к другу. Поэтому при $T \neq 0$ К ионы Nd^{3+} должны

вносить отличный от нуля одноионный вклад в магнитную анизотропию ферритов-гранатов Nd_xY_{3-x}Fe₅O₁₂.

В таблице приведены значения спонтанной намагниченности для образцов системы $Nd_x Y_{3-x}Fe_5O_{12}$, рассчитанные с учетом образования неколлинеарной магнитной структуры (σ_0^{ums}). Видно, что согласие полученных нами при температуре 4,2 К экспериментальных значений намагниченности σ_{exp} с расчетыми σ_0^{ums} удовлетворительное.

Таким образом, экспериментальные результаты σ_{exp} ферритов-гранатов $Nd_xY_{3-x}Fe_5O_{12}$ могут быть объяснены в предположении, что в этих соединениях при гелиевых температурах имеется неколлинеарная магнитная структура. Это может быть связано также с тем, что ионы Nd^{3+} имеют очень большую анизотропию и магнитные моменты этих ионов направлены вдоль осей типа [110]. Магнитные моменты ионов Fe^{3+} в нулевом поле ориентированы по осям типа [111].

Из результатов нейтронографических исследований феррита-граната $Nd_{1,5}Y_{1,5}Fe_5O_{12}$ следует, что при температурах выше 77 К неколлинеарная магнитная структура в этом соединении не образуется [16]. Так как нейтронографические данные о магнитной структуре образцов системы $Nd_xY_{3-x}Fe_5O_{12}$ в области гелиевых температур отсутствуют, можно предположить, что образование неколлинеарной магнитной структуры в этих соединениях происходит при T < 77 К. Возникновение неколлинеарной магнитной структуры в области гелиевых температур имеет место и в других редкоземельных ферритах-гранатах, в которых редкоземельные ионы имеют отличный от нуля орбитальный момент [6, 7].

В заключение выражаем благодарность Б. В. Миллю, вырастившему монокристаллы.

ЛИТЕРАТУРА

[1] Geller S., Williams H. J., Sherwood R. C.//Phys. Rev. 1961. 123, N 5. P. 1692. [2] Смарт Д. Эффективное поле в теории магнетизма. М., 1968. [3] White R. L.//J. Appl. Phys. 1961. 32, N 6. P. 1178. [4] Wolf W. P.//J. Appl. Phys. 1961. 32, N 4. P. 742. [5] T Cheou F., Bertaut E. F., Fuess H.//J. de Physique. 1971. 32. Suppl. P. 202. [6] Sayetat F. Tp. Междунар. конф. по магнитизму MKM-73. M., 1974. T. 3. C. 371. [7] Guillot M., Marchand A., T Cheou F.// //J. Appl. Phys. 1982. 5, N 3. P. 2719. [8] Nekvasil V., Roskovec V., Zounova F.//Czech. J. Phys. 1974. B24, N 7. P. 810. [9] Roskovec V., Loriers J., Nekvasil V.//Czech. J. Phys. 1974. B24, N 7. P. 810. [9] Roskovec V., Loriers J., Nekvasil V.//Czech. J. Phys. 1974. B24, N 7. P. 810. [10] Griffith J. S.//Phys. Rev. 1963. 132, N 1. P. 316. [11] Силантьев В. И., Попов А. И., Левитин Р. З., Звездин А. К.//ЖЭТФ. 1980. 78, № 2. С. 640. [12] Демидов В. Г., Левитин Р. З., Попов Ю. Ф.//ФТТ. 1976. 18, № 2. С. 596. [13] Катіпski А. А., Воgomolova G. А., Vylegzhanin D. N. et al.//Phys. Stat. Sol. (a). 1976. 38, N 1. P. 409. [14] Сlark B. H.//Phys. Rev. 1965. 139, N 6. P. A1944. [15] Крупичка С. Физика ферритов и родственных им магнитных окислов. М., 1976. Т. 2. [16] Кузьминов Ю. С.//Кристаллография. 1964. 9, № 2. С. 204.

Поступила в реданцию 16.01.90