ЛИТЕРАТУРА

[1] Генераторы и усилители на релятивистских электронных потоках/Под ред. В. М. Лопухина. М., 1987. [2] Канавец В. И., Мозговой Ю. Д.//Радиотехн. и электроника. 1975. 20, № 10. С. 2121. [3] Гаруца Н. А., Канавец В. И., Слепков А. И.//Вестн. Моск. ун-та. Физ. Астрон. 1986. 27, № 4. С. 37. [4] Канавец В. И., Мозговой Ю. Д., Слепков А. И.//Радиотехн. и электроника. 1986. 31, № 6. С. 1178. [5] Григоренко Л. П., Канавец В. И., Корешков Е. Н. и др.//Электронная техника. Электроника СВЧ. 1978. № 9. С. 27. [6] Александров А. Ф., Галузо С. Ю., Канавец В. И. и др.//ЖТФ. 1981. 51, № 8. С. 1727. [7] Бугаев С. П., Канавец В. И., Климов А. И. и др.//Радиотехн. и электроника. 1987. 32, № 7. С. 1488. [8] Гаруца Н. А., Канавец В. И., Слепков А. И.// //Там же. 1988. 33, № 4. С. 783. [9] Ильинский А. С., Трубников С. В.//Численные методы электродинамики. М., 1978. С. 54. [10] Александров А. Ф., Галузо С. Ю., Канавец В. И. и др.//ЖТФ. 1980. 50, № 11. С. 2381. [11] Бугаев С. П., Канавец В. И. и др.//Релятивистская высокочастотная электроника. Горький, 1988. С. 78.

Поступила в редакцию 06.12.89

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 5

УДК 530.014

КВАНТОВОЕ НЕВОЗМУЩАЮЩЕЕ ИЗМЕРЕНИЕ ЭНЕРГИИ ФОТОНОВ В СХЕМЕ КВАДРАТИЧНОГО РАССЕЯНИЯ ЭЛЕКТРОНОВ

С. П. Вятчанин

(кафедра молекулярной физики и физических измерений)

Электрон, летящий вдоль диэлектрического волновода без оболочки со скоростью, близкой к фазовой, получает пропорциональный энергии фотона поперечный импульс, который и предложено регистрировать. Изложен анализ эффекта с учетом дисперсии волновода, радиационного трения и паразитного черенковского излучения. Чтобы избежать черенковского излучения и получить нужную зависимость фазовой скорости от частоты, предложено использовать гофрированный диэлектрический волновод.

Как известно, для реализации квантового невозмущающего измерения энергии (КНИЭ) необходимо иметь прибор, гамильтониан связи которого с исследуемым объектом был бы пропорционален квадрату обобщенной координаты объекта [1]. Например, энергию в электрическом контуре можно невозмущающим образом измерить, регистрируя среднюю пондеромоторную силу притяжения между пластинами конденсатора за время, много большее периода [1] (сила пропорциональна квадрату напряжения). Такая процедура дает погрешность измерения энергии $\Delta \mathcal{E}/\mathcal{E}$ меньше так называемого стандартного квантового предела ($\Delta \mathcal{E}/\mathcal{E}$) $_{SQL} = 1/\sqrt{n_q}$, характерного для квазиклассических методов измерения (n_q — среднее число квантов). Кроме пондеромоторных эффектов может быть использована квадратичная нелинейность диэлектрической проницаемости [1—3]. В любом случае экспериментатор сталкивается с необходимостью обеспечить большую нелинейность и малую диссипацию. Нужного сочетания этих двух величин для реализации КНИЭ найти пока не удалось. Единственное достижение в этой области: успешное решение более простой задачи — квантового невозмущающего измерения квадратурной компоненты поля (не энергии) в оптическом диэлектрическом волноводе [4]. Недавнее предложение [5] использовать для реализации КНИЭ солитонные решения в экси-

41

тонных полупроводниках (CdS или GaAs) основано на надежде исключить большие потери в этих веществах с помощью эффекта самоиндуцированной прозрачности. Насколько это реально, покажет эксперимент.

Другая возможность для экспериментальной реализации КНИЭ использовать квадратичное по полю рассеяние электрона на фотоне в волноводе [6, 7]. Суть предложенного эффекта состоит в следующем.

Электрон, пролетающий вдоль диэлектрического волновода без оболочки (рис. 1), колеблется в поперечном направлении под действием переменного электрического поля волны. Из-за неоднородности по-

Рис. І. Схема предлагаемого эксперимента

ля в различные моменты времени на электрон действует переменное поле разной амплитуды. В результате возникает постоянная сила, отталкивающая электрон от волновода (сила Миллера [8]). Эта сила пропорциональна квадрату электрического поля, а сообщаемый этой силой импульс пропорционален энергии фотона, что принципиально необходимо для КНИЭ. При поступательной скорости V_0 электрона, близкой к фазовой скорости $V_{\rm ph}$ волны, частота колебаний электрона уменьшается, а амплитуда увеличивается. При таких условиях квадратичное рассеяние усиливается настолько, что может быть использовано для экспериментальной реализации КНИЭ на уровне нескольких квантов в инфракрасном диапазоне.

В данной работе изложен детальный расчет этого эффекта с учетом дисперсии волновода, радиационного трения электрона и паразитного черенковского излучения. Предложено использовать не гладкий, а гофрированный диэлектрический волновод, чтобы избежать паразитного черенковского излучения.

1. Взаимодействие электрона с полем волновода

Взаимодействие нерелятивистского электрона с выбранной модой волновода описывается гамильтонианом (рассматриваем только волну, бегущую слева направо, в одном направлении с электроном, поскольку взаимодействие с обратной волной мало и им можно пренебречь)

$$\mathscr{H} = (\mathbf{P} - (e/c) \mathbf{A})^2 / (2m) + \int_0^\infty \hbar \omega \, d\omega \, a_\omega^+ a_\omega,$$
(1)

$$\mathbf{A} = \mathbf{A}(t, \mathbf{r}_{\perp}, z) = \int_{0}^{\infty} d\omega \mathbf{A}(\omega, \mathbf{r}_{\perp}) a_{\omega}(t) \cdot \exp\{i\beta(\omega)z\} - \mathfrak{s}. c.,$$

тде е, т, Р — заряд, масса и обобщенный импульс электрона; А — вектор-потенциал; с — скорость света в вакууме; \hbar — постоянная Планка; ω и $\beta(\omega)$ — частота и волновой вектор; a^+_{ω} и a_{ω} — операторы рождения и уничтожения; \mathbf{r}_{\perp} и z — поперечная и продольная координаты электрона; $\mathbf{A}(\omega, \mathbf{r}_{\perp})$ — векторная функция, описывающая распределение вектор-потенциала в поперечном сечении волновода, которая, как известно (см., напр., [9]), может быть записана в виде

$$\mathbf{A}(\omega, \mathbf{r}_{\perp}) = \mathbf{F}(\omega, \mathbf{r}_{\perp}) / F_{0}, \mathbf{F}(\omega, \mathbf{r}_{\perp}) = \frac{i}{(k^{2}n^{2} - \beta^{2})} \left\{ \beta \nabla_{\perp} \varphi(\omega, \mathbf{r}_{\perp}) - k \left[\mathbf{e}_{z} \times \nabla_{\perp} \psi(\omega, \mathbf{r}_{\perp}) \right] \right\} + \mathbf{e}_{z} \varphi(\omega, \mathbf{r}_{\perp}), \qquad (2)$$

тде $k = \omega/c$, n — показатель преломления, равный n_0 внутри и 1 снаружи волновода; ∇_{\perp} — поперечная составляющая оператора ∇ ; \mathbf{e}_z — единичный вектор вдоль оси z. Нормировочный коэффициент F_0 определяется выражением

$$F_{0}^{2} = \frac{\omega V_{\rm gr}}{4\pi^{2}\hbar c^{2}} \int n|F|^{2} ds_{\perp},$$
(3)

тде интегрирование ведется по всей площади поперечного сечения, $V_{\rm gr} = d\omega/d\beta$ — групповая скорость. Поля *TH*-мод описываются функцией $\phi(\psi=0)$, а поля *TE*-мод — функцией $\psi(\phi=0)$, гибридные моды описываются суперпозицией ϕ и ψ .

В дальнейшем будем считать близкими скорости V_0 электрона и фазовой скорости $V_{ph}=\omega/\beta$, так что параметр $\alpha_{ph}=1-V_0/V_{ph}\ll 1$.

Радиус-вектор электрона запишем в виде $e_z V_0 t + r_{el}$. Как обычно, разложим движения электрона r_{el} на «быстрые» r и «медленные» \mathbf{R} . Для \mathbf{r} гамильтониан (1) дает уравнение

$$d_t^2 \mathbf{r} = -\frac{ie}{n} \int_0^\infty d\omega \cdot k a_\omega \exp\left\{i\beta V_0 t\right\} \left(\gamma \mathbf{A}_{\perp TH} + A_{\parallel} \mathbf{e}_z\right) + \mathfrak{s. c.}, \tag{4}$$

тде $\gamma = 1 - V_0 V_{\rm ph}/c^2$, индексы « \perp » и « \parallel » обозначают поперечную и продольную составляющую, индекс «*TH*» относится к *TH*-составляющей (функция φ). Уравнение для оператора a_{ω} после разложения в ряд по возмущениям *r* имеет вид

$$d_t a_{\omega} = -i\omega a_{\omega} + \frac{eV_0\beta}{c\hbar} \exp\left\{-i\beta V_0 t\right\} \left[-i\beta^{-1}A_{\parallel}^* + r_{\parallel}A_{\parallel}^* + \gamma\left(\mathbf{r}_{\perp}\mathbf{A}_{\perp TH}^*\right)\right].$$
(5)

Здесь первый член в скобках описывает черенковское излучение, второй и третий — ондуляторное. Черенковское излучение рассмотрим ниже и пока этот член учитывать не будем.

×4.

В формулах (4), (5) выписаны только компоненты вектор-потенциала A, относящиеся к TH-составляющей, так как взаимодействие с компонентами TE-волны приблизительно в $1/\alpha_{\rm ph}$ раз меньше. Ниже индекс «TH» будем опускать, подразумевая только TH-составляющую A.

2. Учет радиационного трения

Рассмотрим взаимодействие с электроном квазимонохроматического волнового импульса, средняя частота которого ω_0 , длительность τ_0 , полоса частот $\Delta \omega \simeq 1/\tau_0 \ll \omega_0$. Такой импульс может содержать точноопределенное число квантов [10]. В общем случае его энергия $\mathcal{E} = -n_q \cdot \hbar \omega_0$ (n_q — среднее число квантов), и мы будем называть его группой фотонов. Зависимость функции $\mathbf{A}(\omega)$ от частоты можно не учитывать и считать $\mathbf{A}(\omega) = \mathbf{A}(\omega_0)$. При близости скоростей V_0 и $V_{\rm ph}$ средняя частота колебаний электрона $\Omega = \alpha_{\rm ph}\omega_0 \ll \omega_0$, а время взаимодействия его с волной $\tau_{\rm int} = \tau_0/\alpha_{\rm gr} > \tau_0$, где $\alpha_{\rm gr} = |1 - V_0/V_{\rm rg}|$.

Для учета влияния радиационного трения на движение электрона удобно ввести величину $q = \gamma(\mathbf{r}_{\perp} \cdot \mathbf{A}_{\perp}) + r_{\parallel}A_{\parallel}$. Подставив решение уравнения (5) для $\alpha(\omega)$ в уравнение для q, получаем

$$d_t^2 q + \Gamma d_t q = BC \left(\alpha_{\text{gr}} t \right) \exp\left\{ -i\Omega t \right\} + \mathfrak{s. c.}, \tag{6}$$

где $\Gamma = \pi e^2 V_0 \beta B (\hbar m c^2 a_{gr} a_{ph})^{-1}$ и есть коэффициент радиационного трения, $B = \gamma^2 |\mathbf{A}_{\perp}(\omega_0, r_{\perp})|^2 + |\mathbf{A}_{\parallel}(\omega_0, r_{\perp})|^2$, C(t) — огибающая волнового импульса:

$$C(t) = \frac{ie}{mc} \int_{0}^{\infty} \omega \, d\omega \, a_{\omega} \exp\left\{i(\omega - \omega_0) t\right\}$$

(операторы $a_{0\omega}$ соответствуют состоянию поля в волноводе до взаимодействия).

После этого легко получаются решения для «быстрых» движений \mathbf{r}_{\perp} и $\mathbf{r}_{||}$. Чтобы получить уравнение для «медленных» движений электрона, выпишем следующие члены разложения правой части уравнения (4) по \mathbf{r}_{\perp} и $\mathbf{r}_{||}$ и удержим только «медленные» члены. Проинтегрировав полученное уравнение по времени, найдем поперечный импульс \mathbf{P}_{\perp} , получаемый электроном в результате взаимодействия:

$$P_{\perp} = -\frac{\mathscr{C}}{V_0} \frac{2\Gamma\Omega}{\Omega^2 + \Gamma^2} \frac{\nabla_{\perp}B}{\beta B}.$$
(7)

Импульс **Р**_⊥ и предложено регистрировать в схеме КНИЭ [6, 7]. Радиационное затухание ограничивает импульс P_{\perp} величиной $P_{\max} \simeq 2\mathcal{E}/V_0\beta D$ ($P_{\perp}=P_{\max}$ лишь при $\Gamma=\Omega$).

Эта формула справедлива при условии $P_{\perp}\tau_{int}/m\ll D = (\beta^2 - k^2)^{-1/2} - сдвиг электрона в поперечном направлении мал по сравнению с мас$ штабом D убывания поля снаружи волновода. Это ограничивает дли $тельность регистрируемого фотона: <math>\tau_0 \simeq \tau_{int} \alpha_{gr} \ll m D \alpha_{gr}/P_{\perp}$.

3. Процедура измерения

Ошнбка измерения энергии группы фотонов состоит из двух частей:

$$(\Delta \mathcal{P}_{\text{meas}}/\mathcal{E})^2 = (\Delta P/P_{\perp})^2 + (\partial P_{\perp}/\partial r_{\perp})^2 \cdot \Delta X^2 / P_{\perp}^2, \tag{8}$$

тде $\Delta P \simeq \hbar/2d$ — дифракционная неопределенность поперечного импульса, зависящая от входной аппертуры d пучка; $\Delta X = \sqrt{d^2 + (\Delta P \tau_{int}/m)^2}$ — средняя неопределенность поперечной координаты, практически совпадающая с d. При оптимальной ситуации ($\Gamma = \Omega$ и $P_{\perp} = P_{max}$), как видно из (7), $\partial P_{\perp}/\partial r_{\perp} = 0$ ($\nabla_{\perp} B/B$ практически не зависит от r_{\perp}) и второй член в (8) можно не принимать во внимание. Однако это справедливо, пока $\Delta X \leqslant D$. Поэтому минимальная ошибка будет равна

$$(\Delta \mathscr{G}_{\text{meas}}/\mathscr{G}) \simeq \hbar/(2DP_{\text{max}}) \simeq 1/n_o. \tag{9}$$

Воздействие электрона на группу фотонов при пренебрежении поперечным смещением электрона сводится к фазовому сдвигу операторов $a_{\omega} = a_{0\omega} \cdot (\Omega - i\Gamma)/(\Omega + i\Gamma)$. Зависимость $\Gamma(r_{\perp})$ и неопределенность ΔX приводит к возмущению фазы $\Delta \phi \simeq (2\Omega\Gamma/(\Omega^2 + \Gamma^2)) \cdot 2\Delta X/D$, что эквивалентно случайной задержке $\Delta \tau_0 \simeq \Delta \phi/\omega_0$ группы фотонов в соответствии с соотношением $\Delta \mathcal{E}_{meas} \cdot \Delta \tau_0 \ge \hbar/2$.

В следующем приближении (при учете поперечного смещения электрона во время пролета) появляется возмущение энергии фотона. Это также следует из законов сохранения энергии и продольного импульса электрона и фотона. Оно оказывается равным $\Delta \mathcal{E}_{int} \simeq \simeq -\Delta \mathcal{E}_{\perp}/\alpha_{gr}$, где $\Delta \mathcal{E}_{\perp}$ — изменение кинетической энергии электрона, связанной с поперечным движением. Это возмущение может быть частично скомпенсировано (например, вторичным пролетом электрона). Нескомпенсированность будет определяться дифракционной неопределенностью импульса ΔP , и минимальное возмущение оказывается равным $\Delta \mathcal{E}_{int} \simeq P_{\perp} \Delta P/\alpha_{gr} m$, а при $\Gamma = \Omega$ $\Delta \mathcal{E}_{int} \simeq \mathcal{E} \cdot (\beta D)^{-2} \cdot (\hbar \omega_0/\alpha_{gr} m V_0^2)$. При $\beta D = 1$, $\omega_0 = 4 \cdot 10^{14}$ с, $\alpha_{gr} = 10^{-3}$ и $V_0 = 10^{10}$ см/с это составляет $\Delta \mathcal{E}_{inf} \simeq 4 \cdot 10^{-3} \mathcal{E} = 1.6 \cdot 10^{-2} \cdot \Delta \mathcal{E}_{meas} \cdot n_q$.

Если измерение энергии фотона повторить N раз (с помощью N электронов), то погрешность $\Delta \mathcal{E}_{meas}$ уменьшится, а $\Delta \mathcal{E}_{inf}$ — увеличится в \sqrt{N} раз. При оптимальном N (т. е. $\Delta \mathcal{E}_{meas} = \Delta \mathcal{E}_{inf}$) достигается минимальная погрешность $\Delta \mathcal{E}_{min}/\mathcal{E} \simeq \sqrt{\hbar\omega_0/2\alpha_{gr}mV^2}/\sqrt{n_q}$, что при тех же параметрах составляет $\Delta \mathcal{E}_{min}/\mathcal{E} \simeq 4.4 \cdot 10^{-2}/\sqrt{n_q}$.

4. Возможности экспериментальной реализации

Предложенная схема КНИЭ может быть реализована в диапазоне ближнего инфракрасного света $\omega_0 = 4 \cdot 10^{14} \text{ c}^{-1}$ (длина волны в вакууме $\lambda \simeq 5 \ \mu m$). При использовании материала волновода с большим показателем преломления $n_0 \simeq 2,6 - 2,8$ (халькогенидные стекла) потребуется относительно невысокое ускоряющее напряжение для электронов: 30-50 кэВ.

Одной из проблем является дисперсия волновода. Из-за неравенства скоростей $V_{\rm gr}$ и $V_{\rm ph}$ реализация условия $\Gamma = \Omega$ (т. е. $P_{\perp} = P_{\rm max}$) связана со слишком высокими требованиями к монокинетичности электронов. Численный расчет на ЭВМ для основной моды HE_{11} круглого волновода при $\rho = kr_0 = 2,6$ (r_0 — радиус волновода), прицельном расстоянии r_{\perp} электрона от оси $r_{\perp} = r_0 + \lambda/2\pi$, $V_0 = 10^{10}$ см/с, $n_0 = 2,6$ дает, что условие $\Gamma = \Omega$ реализуется при $a_{\rm ph} \simeq 2,7 \cdot 10^{-6}$ и $a_{\rm gr} \simeq 0,099$. Это соответствует допустимым флуктуациям ускоряющего напряжения ΔU менее 0,2 В. При $V_{\rm ph} \simeq V_{\rm gr}$ условие $\Gamma = \Omega$ выполнялось бы при $a_{\rm ph} \simeq a_{\rm gr} \simeq 20,9 \cdot 10^{-4}$.

Еще одна неприятность заключается в паразитном черенковском излучении электрона, которое происходит на частоте $\omega_{ch} \simeq \omega_0 (1 + \omega_0)$

 $+ \alpha_{gr}/\alpha_{ph})$, близкой к рабочей ($\alpha_{gr} < \alpha_{ph}$). Энергия черенковского излучения \mathcal{E}_{ch} рассчитывается с помощью формулы (5) и равна

$$\mathcal{E}_{\rm ch} = \frac{2\pi e^2 V_0^2 \omega_{\rm ch} |A_{\parallel}(\omega_{\rm ch})|^2 \tau_{\rm int}}{c^2 \hbar \alpha_{\rm gr}}.$$
(10)

При $\tau_{int}=10^{-9}$ с и тех же остальных параметрах численный расчет на ЭВМ для моды HE_{11} дает $\mathcal{E}_{ch}\simeq 60 \hbar \omega_{ch}$, что неприемлемо много для КНИЭ.

Упомянутые трудности могут быть преодолены, если зависимость $V_{\rm ph}(\omega)$ имеет минимум на рабочей частоте ω_0 . Тогда можно обеспечить равенство $V_{\rm ph} \simeq V_{\rm gr}$ и исключить черенковское излучение. Реализовать эти требования можно в диэлектрической замедляющей системе, каковой, например, является гофрированный диэлектрический волновод.

5. Гофрированный диэлектрический волновод

Слабая и медленная зависимость радиуса *r* волновода от продольной координаты вида $r(z) = r_0(1 + m \cos(\beta_{mod}z))$ ($m \ll 1$, $\beta_{mod} \ll \beta$) приводит к пространственной модуляции фазовой скорости: $V_{ph} = V_{oph}(1 + p \cos \beta_{mod}z)$). В такой системе при $p\beta/\beta_{mod} \ll 1$ пространственное решение, соответствующее временной зависимости $\exp\{-i\omega t\}$, представляет собой совокупность пространственных гармоник с постоянными распространения $\beta_i = \beta + i\beta_{mod}$ ($i=0, \pm 1...$) и относительными амплитудами $b_i = (p\beta/2\beta_{mod})^i/i!$. При $p \rightarrow 0$ (гладкий волновод) остается только одна нулевая (i=0) гармоника: $\exp\{i\beta z\}$. Групповые скорости гармоник совпадают.

Рис. 2. а — Зависимости фазовых скоростей V_{iph}/c от параметра¹ kr_0 первых трех пространственных гармоник круглого гофрированного волновода (мода TH_{11}). б — Зависимость V_{1ph}/c от kr_0 в увеличенном масштабе, виден минимум при k_1r_0

Наличие гармоник с постоянными распространения $|\beta_i| \ll k$ приводит к потерям на излучение в пространство. Однако эти потери малы и при $p\beta/\beta_{mod} < 0,1$ и $(\beta - k)/\beta_{mod} > 5$ практически отсутствуют.

Для основной моды $H\dot{E}_{11}$ на рис. 2 приведена зависимость фазовой скорости V_{1ph} первой гармоники от kr_0 (расчет на ЭВМ). При выборе

рабочей частоты $k=k_1$ в точке минимума $V_{1\text{ph}}(k)$ и скорости электрона $V_0 \ll V_{1\text{ph}}(k_1)$ практически отсутствует черенковское излучение (излучение в гармоники с номерами $i \ge 2$ мало и разнесено по частоте). Кроме того, при $k=k_1$ $V_{gr}=V_{1\text{ph}}$, что позволяет реализовать условие $\Gamma=\Omega$ при бо́льших значениях α_{ph} . Правда, взаимодействие электрона с гармоникой i=1 в b_1^2 раз меньше, чем с основной волной ($b_0 \simeq 1$).

Можно показать, что при $k=k_1$ выполняются соотношения: $\beta_{\text{mod}}/\beta = (V_{\text{oph}}/V_{\text{gr}}-1)$ и $p=m(V_{\text{oph}}/V_{\text{gr}}-1)$. Отсюда следует, что $p\beta/\beta_{\text{mod}}=-m$ (т. е. $b_1=b_{-1}=m/2$).

Численный расчет для основной HE_{11} моды показывает, что при $m=0,1, kr_0=2,6, k=k_1$ ($\beta_{mod}/\beta=0,11$) и тех же значениях остальных параметров условие $\Gamma=\Omega$ выполняется при $\alpha_{1ph}\simeq 1,5\cdot 10^{-5}$, что более чем в 5 раз больше приведенной выше оценки α_{1ph} для гладкого волновода (за счет выполнения условия $V_{1ph}=V_{gr}$).

Таким образом, работая на первой пространственной гармонике гофрированного диэлектрического волновода, можно исключить паразитное черенковское излучение в предложенной схеме КНИЭ, не потеряв в величине взаимодействия электрона с полем.

Автор глубоко благодарен В. Б. Брагинскому, Ю. И. Воронцову и Ф. Я. Халили за ценные дискуссии.

ЛИТЕРАТУРА

[1] Брагинский В. Б., Воронцов Ю. И., Халили Ф. Я.//ЖЭТФ. 197. 73. С. 1340. [2] Брагинский В. Б., Вятчанин С. П.//ДАН СССР. 1981. 259. С. 570; Там же. 1982. 264. С. 1136. [3] Ітото М., Наиз Н. А., Уататото Ү./// //Phys. Rev. 1985. A32. Р. 2287. [4] Slusher R. E., Hollberg L. W., Yurke B. et al.//Phys. Rev. Lett. 1985. 55. Р. 2409. [5] Wanatabe K., Nakano H., Honold A., Yamamoto Y.//Phys. Rev. Lett. 1989. 62. Р. 2257. [6] Braginsky V. B., Vyatchanin S. P.//Phys. Lett. 1988. 132А. Р. 206. [7] Брагинский В. Б., Вятчанин С. П.//ДАН СССР. 1989. 307. С. 96. [8] Гапонов А. В., Миллер М. А.// //ЖЭТФ. 1958.34. С. 241. [9] Снайдерс А., Лав Дж. Теория оптических волноводов. М., 1987. Гл. 30. [10] Брагинский В. Б., Халили Ф. Я.//ЖЭТФ. 1988. 94. С. 151.

Поступила в редакцию 28.02.90