Powder Diffraction File, 1969/Publ. by the American Society for Testing and Materials. York (Pensylvania), 1969. [3] Тикадзуми С.//Физика ферромагнетизма. М., 1983.

Поступила в редакцию 22.01.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 5

УДК 539.213.001

МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТРУКТУРНЫХ ИЗМЕНЕНИЙ В NI—Р ПРИ ГЛУБОКОМ ОХЛАЖДЕНИИ И ПОСЛЕДУЮЩЕМ НАГРЕВЕ

В. С. Степанюк, О. С. Трушин, А. А. Кацнельсон, А. Сас (Венгрия)

(кафедра физики твердого тела)

Методом молекулярной динамики исследуется зависимость структуры сплава Ní₇₅P₂₅ от способа его приготовления. Показано, что структура обладает свойством «теплового гистерезиса». Обсуждается возможность прогнозирования структурной релаксации в рамках молекулярно-динамического моделирования.

Проблема устойчивости состояний, достигаемых при аморфизации путем быстрой закалки, является одной из важнейших как для физики аморфных веществ, так и для их практического использования. Молекулярно-динамическое моделирование позволяет воспроизводить структуру аморфных веществ при различных способах их получения. При этом возможно проследить зависимость структуры аморфной фазы от способа приготовления образца.

С этой целью был поставлен численный эксперимент, состоящий в следующем. Для сплава $Ni_{75}P_{25}$ проведено молекулярно-динамическое моделирование, в ходе которого система выдерживалась длительное время (более 3000 шагов) при температуре 2000 К. Затем началось ступенчатое охлаждение системы до 4 К. Далее, система от 4 К была нагрета до 300 К.

Методика молекулярно-динамического расчета состояла в следующем. Прослеживалось движение 192 атомов никеля и 64 атомов фосфора путем численного интегрирования их уравнений движения. Усреднение физических величин проводилось в рамках микроканонического ансамбля, в котором число частиц, энергия и объем системы остаются постоянными.

Система находилась в ящике, имеющем форму куба, с периодическими граничными условиями. Атомы взаимодействовали с парными потенциалами типа Морзе, параметры которых получены в работе [2]

подгонкой к эксперименту. Расчет проводился по стандартной схеме, описанной нами ранее [1].

Полученные функции радиального распределения g(r) при T = 300 К непосредственно после охлаждения (кривая 1), а затем после глубокого охлаждения и отогрева до T = 300 К (кривая 2) представлены на рисунке. Хорошо видно, что кривые весьма близки между собой и различаются только величинами первого и второго максимумов g(r): оба эти максимума выше для «отогретого» состояния.

Дополнительную информацию о геометрни атомных конфигураций, ответственных за характерный ближний порядок в сплаве, дает анализ структуры молекулярно-динамической модели на языке статистики многогранников Вороного. Такие многогранники представляют собой обобщение ячейки Вигнера—Зейтца на случай неупорядоченных структур. Плоскости, образующие грани многогранника, делят отрезки,

соединяющие ближайших соседей, в соотношении атомных радиусов компонентов сплава.

Каждый многогранник характеризуется набором индексов (n₃, n₄, n₅, n₆, n₇), тде n_i обозначает число граней с і вершинами.

Образец	Тип многогранника										
	металл						металлоид				_
	n _a	n4	n5	n _s	n,	ν. %	n ₃	n4	n _s	n _s	v, %
(1) Быстроохлажден- ный сплав (T = 300 K)	0 0 0	2 1 1	8 10 10	4 2 3	0 0 0	7,8 6,8 4,2	0 0	2 2	8 8	1 2	12,5 9,4
(2) «Отогретый» сплав (T = 300 K)	0 0 0 0	2 1 1 1	8 10 10 10	4 2 4 3	0 0 0 0	7,8 7,8 6,3 5,7	0 0	2 0	8 12	20	17,2 14,1
(3) Низкотемператур- ная фаза (T = 5 K)	0 0 0 0 0	3 1 1 2 2 1	6 10 10 8 8 10	4 2 4 4 5 3	0 0 0 0 0 0	6,8 5,7 5,7 5,2 4,2 3,6	0 0 1 1 0 0	2 2 3 2 2 2 2 3 0	8 6 5 6 8 6 12	2 1 4 3 0 3 0 3 0	15,6 7,8 7,8 6,3 6,3 6,3 4,7 4,7

Символом v обозначена доля многогранников данного типа в структуре.

В таблице представлены преобладающие типы многогранников для различных состояний сплава.

Анализ статистики многогранников Вороного также обнаруживает различие состояний (1) и (2). А именно в отогретом состоянии увеличивается число многогранников некристаллического типа (0 2 8 2, 0 0 12 0 и др.) с центром в металлонде. Конфигурация вокруг атомов металла существенно не меняется. Сравнение статистик состояний (2) и (3) показывает, что отогретый сплав «наследует» некристаллические конфигурации от низкотемпературной фазы. И, кроме того, при нагревании доля таких конфигураций растет, что указывает на возможную структурную релаксацию в системе. Этот вывод подтверждается сравнением величин потенциальной энергии, соответствующих этим состояниям. При этом отогретое состояние обладает меньшей энергией, чем переохлажденное при той же температуре ($U_2 = -0,332, U_1 = = -0,320$ усл. ед.).

Таким образом, молекулярно-динамическое моделирование показало, что конечное состояние системы зависит (хотя и слабо) от пути его реализации. Это означает, что при одних и тех же термодинамических условиях система может иметь различные метастабильные состояния. Переход между этими состояниями может приводить к структурной релаксации [3]. Необходимо отметить, что подобные молекулярно-динамические расчеты имеют. важное значение при промышленном получении аморфных сплавов с заранее заданными свойствами.

ЛИТЕРАТУРА

[1] Трушин О. С., Степанюк В. С., Кацнельсон А. А.//Вестн. Моск. унта. Физ. Астрон. 1989. 30, № 5. С. 85. [2] Chen Li, Cowlam W.//Phys. Chem. Liquids. 1987. 17. Р. 29. [3] Kronmullee H., Mose N.//Proc. 5th Int. Conf. Rapidly Quenched Alloys./Ed. S. Steeb, H. Warlimont. Elsever Science Publishers. B. U. 1985. V. 1. P. 603.