Из этих графиков видно также, что для того, чтобы приблизиться к стандартному квантовому пределу, необходимо достаточно большое время выделения сигнала. Например, при $\tau = \tau_F$ величина s/n (при оптимальной связи измерителя с пробным осциллятором) составляет около 1/4 от уровня $(s/n)_{SQL}$, при $\tau = 3\tau_F$ — около 2/3 и лишь при $\tau > > 10\tau_F$ превышает 0,85 $(s/n)_{SQL}$.

ЛИТЕРАТУРА

[1] Брагинский В. Б., Воронцов Ю. И.//УФН. 1974. 114. С. 41. [2] Брагинский В. Б.//УФН. 1988. 156. С. 93. [3] Брагинский В. Б., Манукин А. Б. Измерение малых сил в физических экспериментах. М., 1974. [4] Воронцов Ю. И., Халили Ф. Я.//Радиотехн. и электроника. 1982. 27. С. 2392. [5] Левин Б. Р. Теоретические основы статистической радиотехники. М., 1989.

Поступила в редакцию 18.06.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 6

АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 539.186.3

О ВЛИЯНИИ ИСКАЖЕНИЯ НАЧАЛЬНОГО СОСТОЯНИЯ АТОМА ПОЛЕМ МНОГОЗАРЯДНОГО ИОНА НА ДВАЖДЫ ДИФФЕРЕНЦИАЛЬНЫЕ СЕЧЕНИЯ ИОНИЗАЦИИ

Н. В. Новиков, В. С. Сенашенко

(кафедра физики атомного ядра; кафедра оптики и спектроскопии)

Предложено теоретическое описание ионизации атома многозарядными ионами: наряду с взаимодействием в конечном состоянии при $Z_1/V_i < 1$ ($Z_1 -$ заряд налетающей частицы, V_i - скорость сталкивающихся частиц) корректно учитывается искажение начального состояния атома мишени полем налетающего иона. Показано, что с увеличением заряда и уменьшением скорости иона влияние искажения начального состояния на угловые и энергетические распределения электронов возрастает. Результаты расчетов для столкновений ионов с атомом гелия сравниваются с экспериментальными данными.

В работе [1] на основе уравнений Фаддеева, модифицированных для кулоновских потенциалов, была сделана попытка в тех же приближениях, что и для столкновений с протонами, описать угловые и энергетические распределения электронов, образующихся при ионизации атомов гелия другими положительными ионами. Однако результаты, полученные для ионов с зарядом $Z_1 > 1$ при одинаковой скорости сталкивающихся частиц, обнаружили значительно большие отличия от экспериментальных данных, чем для столкновений с протонами. Это означает, что при теоретическом описании столкновений многозарядных ионов с атомами к модели ионизации должны предъявляться более жесткие требования. Так, в отличие от столкновений с протонами при росте заряда налетающего иона необходимо учитывать его влияние на движение атомного электрона не только в конечном, но и в начальном состоянии.

Целью работы является исследование влияния искажения начального состояния нейтральной мишени полем многозарядного иона на

44

дважды дифференциальные сечения ионизации, описывающие угловые и энергетические распределения электронов. В отличие от работ [1, 2], где амплитуда ионизации вычислялась с волновой функцией начального состояния, соответствующей плосковолновому борновскому приближению, а в конечном состоянии учитывалась дальнодействующая часть кулоновского взаимодействия между тремя заряженными частицами, в настоящей работе используется более точная волновая функция начального состояния, описывающая рассеяние заряженной частицы на связанной паре и обладающая правильным асимптотическим поведением [3].

Ионизация сложного атома яалетающим ионом может рассматриваться как столкновение с участием трех квазичастиц: 1 — налетающий ион, 2 — выбитый электрон и 3 — ион-остаток атома мишени. В этом случае волновая функция конечного состояния $\Psi_f^{(-)}$, описывающая движение системы трех свободных заряженных частиц, определяется в соответствии с работой [4] и в предположении, что основной вклад в амплитуду ионизации вносит область расстояний между сталкивающимися частицами $r_{13} \sim r_{12}$, может быть представлена в виде

$$\Psi_{i}^{(-)} = \varphi_{\mathbf{k}_{23}}(\mathbf{r}_{23}) \exp\{i\mathbf{k}_{i}\mathbf{r}_{13}\} F^{(-)}(v_{12}, \mathbf{r}_{12}) F^{(-)}(v_{13}, \mathbf{r}_{12}), \qquad (1)$$

$$F^{(\pm)}(v_{ij}, \mathbf{r}_{il}) = \exp\{-\frac{\pi v_{il}}{2}\} \Gamma(1 \pm i v_{ij})_{1} F_{1}(\mp i v_{ij}, 1, \pm i (k_{il}r_{il} \mp \mathbf{k}_{ij}\mathbf{r}_{il})), \qquad (2)$$

где \mathbf{r}_{ij} , \mathbf{k}_{ij} и μ_{ij} — соответственно относительные координата, импульс и приведенная масса частиц *i* и *j* в конечном состоянии, k_j — импульс рассеянного иона, Z_i — заряд *i*-й частицы, $v_{ij}=Z_iZ_j\mu_{ij}/k_{ij}$ — кулоновский параметр, $F^{(-)}(v_{ij}, \mathbf{r}_{il})$ — искажающие множители, описывающие относительное движение пары частиц *i* и *j*, $\phi_{\mathbf{k}_{23}}(\mathbf{r}_{23})$ — волновая

функция выбитого электрона в поле иона-остатка атома мищени.

Угловые и энергетические распределения выбиваемых из атома электронов определяются амплитудой ионизации

$$t_{fi} = S_{fi} \sqrt{N_e} \langle \Psi_i^{(-)} | V_f | \Psi_i^{(+)} \rangle = S_{fi} \sqrt{N_e} \tilde{t}_{fi}, \qquad (3)$$

где S_{fi} — интеграл перекрывания волновых функций атома и ионаостатка, N_e — число электронов в атоме, \bar{t}_{fi} — трехчастичная амплитуда ионизации, V_f — оператор перехода, включающий взаимодействие рассеянного иона с атомом, которое не учитывается в волновой функции (1).

Волновая функция начального состояния была получена путем аналитического продолжения волновой функции трех асимптотически свободных заряженных частиц [4] в область энергий, соответствующих связанным состояниям пары (1, 2) при $v_i \gg \sqrt{2\varepsilon_{12}}$, где ε_{12} — энергия связи частиц 1 и 2, а v_i — скорость налетающего иона. Однако, предполагая, что область расстояний $r_{23}>1$ вносит малый вклад в амплитуду ионизации (3), при разложении

$$F^{(+)}(Z_1Z_3/v_i, \mathbf{r}_{13} = \mathbf{r}_{12} + \mathbf{r}_{23})$$
 в ряд по r_{23}/r_{12} для $Z_1/v_i \leq 1$

можно в волновой функции начального состояния $\Psi_i^{(+)}$ ограничиться дипольным членом разложения

$$\Psi_{i}^{(+)} = \varphi_{0}(\mathbf{r}_{23}) \exp\{i\mathbf{k}_{i}\mathbf{r}_{13}\} F^{(+)}\left(-\frac{Z_{1}}{v_{i}}, \mathbf{r}_{12}\right) \left\{F^{(+)}\left(\frac{Z_{1}Z_{3}}{v_{i}}, \mathbf{r}_{12}\right) + \nabla_{\mathbf{r}_{12}}F^{(+)}\left(\frac{Z_{1}Z_{3}}{v_{i}}, \mathbf{r}_{12}\right)\mathbf{r}_{23}\right\},$$
(4)

где $\varphi_0(\mathbf{r}_{23})$ — волновая функция связанного состояния электрона в изолированном атоме, \mathbf{k}_i — импульс налетающего иона. Полагая в случае нейтральной мишени $Z_3 = 1$ и воспользовавшись асимптотикой искажающих множителей (2), получаем

$$\Psi_i^{(+)} \simeq \varphi_0(\mathbf{r_{23}}) \exp\left\{i\mathbf{k}_i \mathbf{r_{13}}\right\} \left(1 + i \frac{Z_1}{v_i} \frac{(\mathbf{r_{23}}\mathbf{r_{12}})}{r_{12}^2}\right).$$
(5)

Здесь $\Psi_i^{(+)}$ учитывает возмущение атома полем многозарядного иона, причем величина этого возмущения растет с увеличением заряда и уменьшением скорости иона. Она обладает корректным асимптотическим поведением при $r_{12} \rightarrow \infty$ и в пределе больших энергий столкновения $v_i \rightarrow \infty$ соответствует плосковолновому приближению. Следует отметить, что первое слагаемое в (4) в виде произведения двух искажающих множителей (2), которое учитывается в работе [5], дает при $Z_1/v_i < 1$ поправки к плосковолновому приближению ~ $(Z_1/v_i)^2$, которыми можно пренебречь по сравнению с первыми двумя членами разложения второго слагаемого в (4).

С учетом определений волновых функций (1) и (5) трехчастичная амплитуда ионизации принимает вид

$$\widetilde{t}_{fi} = -Z_1 \int d\mathbf{r}_{23} \varphi^*_{\mathbf{k}_{23}}(\mathbf{r}_{23}) \varphi_0(\mathbf{r}_{23}) \exp\{i\mathbf{Q}\mathbf{r}_{23}\} \int d\mathbf{r}_{12} \exp\{i\mathbf{Q}\mathbf{r}_{12}\} \times \left(\frac{1}{r_{12}} + i\frac{Z_1}{v_i} \frac{(\mathbf{r}_{23}\mathbf{r}_{12})}{r_{12}^3}\right) F^{(-)*}(\mathbf{v}_{12}, \mathbf{r}_{12}) F^{(-)*}(\mathbf{v}_{13}, \mathbf{r}_{12}) = \widetilde{t}_{fi}^{(1)} + \widetilde{t}_{fi}^{(2)}, \quad (6)$$

где $\mathbf{Q} = \mathbf{k}_i - \mathbf{k}_j$ — передаваемый импульс. Первое слагаемое в (6) определяет амплитуду ионизации с учетом лишь взаимодействия в конечном состоянии, вычисленную в работе [2], тогда как второе учитывает также искажение начального состояния электрона полем заряда налетающего иона в дипольном приближении. Аналогичный результат можно получить из оптической модели, упрощая соответствующим образом полюсную часть оптического потенциала [6].

Представим $\tilde{t}_{fi}^{(2)}$ в следующем виде:

$$\widetilde{t}_{fi}^{(2)} = -\frac{Z_1^2}{v_i} \int d\mathbf{r}_{23} \varphi_{\mathbf{k}_{23}}^* (\mathbf{r}_{23}) \varphi_0(\mathbf{r}_{23}) \exp\{i\mathbf{Q}\mathbf{r}_{23}\} (\mathbf{r}_{23}\mathbf{J}(\mathbf{v}_{12}, \mathbf{v}_{13})),$$
(7)

где .

$$J(v_{12}, v_{13}) = i \int d\mathbf{r} \, \frac{\exp{\{i\mathbf{Qr}\}}}{r^3} \, \mathbf{r} F^{(-)*}(v_{12}, \mathbf{r}) F^{(-)*}(v_{13}, \mathbf{r}).$$
(8)

Учитывая, что при $v_{12} = v_{13} = 0$

$$\mathbf{J}(0, 0) = i \frac{2i\mathbf{Q}}{\pi Q} \int d\mathbf{r} \frac{1}{r^2} \exp{\{i\mathbf{Q}\mathbf{r}\}},\tag{9}$$

и считая, что поле иона изменяет лишь модуль интеграла (8), получаем

$$\mathbf{J}(\mathbf{v}_{12}, \ \mathbf{v}_{13}) \simeq \frac{-2\mathbf{Q}}{\pi Q} \int_{0}^{\infty} d\lambda \int d\mathbf{r} \frac{\exp\left\{-\lambda r\right\}}{r} \exp\left\{i\mathbf{Q}\mathbf{r}\right\} F^{(-)*}(\mathbf{v}_{12}, \mathbf{r}) F^{(-)*}(\mathbf{v}_{13}, \mathbf{r}).$$
(10)

Для оценки этого интеграла, используя метод контурного интегрирования Нордсика [7] и таблицы интегралов [8], получаем

$$\mathbf{J}(\mathbf{v}_{12}, \mathbf{v}_{13}) \simeq -\frac{4\pi}{Q^2} \mathbf{Q} K_{\text{dir}}(\mathbf{v}_{12}, \mathbf{v}_{13}) \gamma(\mathbf{v}_{12}, \mathbf{v}_{13}), \qquad (11)$$

где

$$\gamma(\mathbf{v}_{12}, \mathbf{v}_{13}) = {}_{2}F_{1}\left(-i\mathbf{v}_{12}, \frac{1}{2}, 1, X_{12}\right) {}_{2}F_{1}\left(-i\mathbf{v}_{13}, \frac{1}{2}, 1, X_{13}\right).$$
(12)

Здесь $X_{ij} = 2 (\mathbf{Q} \mathbf{k}_{ij})/(Q^2 + 2\mathbf{Q} \mathbf{k}_{ij}), K_{dir}(\mathbf{v}_{12}, \mathbf{v}_{13})$ — кинематический множитель, учитывающий взаимодействие в конечном состоянии, явный вид которого приводится в работе [2].

С учетом (6)—(11) трехчастичная амплитуда ионизации принимает вид

$$\widetilde{t}_{ff} = -\frac{4\pi Z_1}{Q^2} \widetilde{F}(\mathbf{Q}, \mathbf{k}_{23}) K_{\text{dir}}(\mathbf{v}_{12}, \mathbf{v}_{13}) K_{\text{in}}(\mathbf{v}_{12}, \mathbf{v}_{13}),$$
(13)

rдe

$$K_{\rm in}(v_{12}, v_{13}) = 1 + i \frac{Z_1}{v_i} Q \frac{\partial \ln F(Q, k_{23})}{\partial Q} \gamma(v_{12}, v_{13}).$$
(14)

Здесь $\tilde{F}(\mathbf{Q}, \mathbf{k}_{23})$ соответствует борновской амплитуде ионизации, K_{in} учитывает взаимодействие в начальном состоянии, влияние которого, как видно из формулы (3), возрастает с увеличением передаваемого импульса. Отметим, что в отличие от работы [9] амплитуда (13) при $v_i \rightarrow \infty$ стремится к $-4\pi Z_1 \tilde{F}(\mathbf{Q}, \mathbf{k}_{23})/Q^2$.

Воспользовавшись формулами (3) и (13), определим дважды дифференциальное сечение ионизации, описывающее угловые и энергетические распределения выбитых электронов:

$$\frac{d^{2}\sigma}{dE_{2}d\Omega_{2}} = (4\pi^{2}\mu_{13})^{2} S_{fi}^{2} N_{e} \sqrt{2E_{2}} \int d\Omega_{1} \left| -\frac{4\pi Z_{1}}{Q^{2}} \widetilde{F}(\mathbf{Q}, \mathbf{k}_{23}) \times K_{dir}(\mathbf{v}_{12}, \mathbf{v}_{13}) K_{in}(\mathbf{v}_{12}, \mathbf{v}_{13}) \right|^{2}, \qquad (15)$$

где $d\Omega_i$ — элемент телесного угла в направлении движения *i*-й частицы. Это определение ниже используется для расчетов сечений ионизации атома гелия многозарядными ионами.

Обсуждение результатов расчетов

Угловые и энергетические распределения электронов, выбиваемых из атома гелия различными ядрами, представлены на рис. 1—5. Расчеты были выполнены с аналитической волновой функцией основного состояния атома гелия [13], а в качестве волновой функции выбитого из атома электрона бралась точная кулоновская функция непрерывного спектра в поле заряда $Z_3=1$.

На рис. 1 показано угловое распределение электронов с энергией $E_2=33$ эВ, выбиваемых из атома гелия в столкновениях с ${}^{3}\mathrm{He}^{2+}$ при

47

Рис. 2

Рис. З

Рис. 1. Угловые распределения электронов при ионизации атома Не ионами ³He²⁺ с энергией $E_i = 300$ кэВ и $E_2 = 33$ эВ. Все расчеты выполнены по формуле (15): 1 — $K_{\rm dir} \neq 1$, $K_{\rm in} \neq 1$; 2 — $K_{\rm dir} \neq 1$, $K_{\rm in} = 1$; 3 — $K_{\rm dir} = 1$, $K_{\rm in} = 1$; 4 — $K_{\rm dir} \neq 1$, $K_{\rm in} \neq 1$ (в отличие от кривой 1 в расчетах $\widetilde{F}(Q, K_{23})$ учитывалась короткодействующая часть потенциала кона He⁺ при определении волновой функции выбитого электрона); крестики — эксперимент из [10]

Рис. 2. Энергетические распределения электронов при ионизации атома Не ионами ³He²⁺ с энергией $E_i = 180$ и 300 кэВ под углом эжекции $\theta_2 = 17^\circ$; крестики — эксперимент из [11]. Обозначения те же, что на рис. 1

Рис. 3. Энергетические распределения электронов при нонизации атома Не нонами O^{8+} с энергией $E_i = 109,8$ МэВ под углом эжекции $\theta_2 = 0$. Эксперимент из [12]. Обозначения те же, что на рис. 1

E_i=300 кэВ. Учет искажения начального состояния полем налетающего иона (кривая 1) приводит к заметному уменьшению отличий между теорией и экспериментом в задней полусфере углов эжекции. Оставшиеся отличия могут быть устранены соответствующим выбором $\varphi_{\mathbf{k}_{20}}(\mathbf{r}_{23})$, более точно учитывающей экранировку заряда ядфункции ра остаточного иона 1s-электроном (кривая 4). Учет взаимодействия только в конечном состоянии (кривая 2), описывая угловые распределения в передней полусфере углов эжекции, приводит к результатам, отличающимся от экспериментальных значительно данных при $\theta_2 \geq 90^\circ$.

На рис. 2 показаны энергетические распределения электронов при $\theta_2 = 17^\circ$, выбиваемых из атома гелия в столкновениях с ³He²⁺ при $E_i = 180$ и 300 кэВ. Для электронов с энергией $E_2 \ge 20$ и 35 эВ соответственно учет искажения начального состояния полем налетающего иона дает хорошее согласие с экспериментом по сравнению с другими вариантами расчетов. Однако максимум, наблюдаемый экспериментально при малых энергиях электронов, объяснить не удается [15].

Влияние искажения начального состояния на форму «каспа» в энергетическом распределении электронов при $\theta_2=0$, соответствующего захвату выбитого из атома электрона в континуум налетающего иона, рассмотрено на примере столкновений ядра кислорода O^{8+} с атомами гелия при $E_i=109,8$ МэВ (рис. 3). Для сравнения с экспери-

Рис. 4. Энергетические распределения электронов при ионизации атома Не ионами О⁸⁺ с энергией 5 МэВ/нуклон под углами эжекции 30, 90 и 150°. Эксперимент из [14]. Обозначения те же, что на рис. 1

Рис. 5. Энергетические распределения электронов при ионизации атома Не ионами Ne¹⁰⁺ с энергией 5 МэВ/нуклон под углами эжекции 30, 90 и 150°. Эксперимент из [14]. Обозначения те же, что на рис. 1

нормировались к расчетам ментальными данными, которые в точке E₂=3619 эВ, вычислялась свертка теоретических кривых с аппаратной функцией [12], соответствующей угловому и энергетическому разрешению $\Delta \theta_2 = 1.4^{\circ}$ и $\Delta E_2 = 0.2$ эВ соответственно. Расчеты показывают, что учет взаимодействия электрона с налетающим ионом в начальном состоянии (K_{in}≠1) приводит к увеличению ширины и уменьшению асимметрии «каспа», характер которой зависит от взаимодействия электрона с ионом-остатком атома мишени. При этом форма экспериментального энергетического распределения ближе к вычисленному с учетом влияния поля иона как в начальном, так и в конечном состояниях ($K_{dir} \neq 1$ и $K_{in} \neq 1$).

На рис. 4—5 показаны энергетические распределения электронов, образующихся в результате ионизации атома гелия быстрыми ядрами O^{8+} и Ne^{10+} при $E_i = 5$ МэВ/нуклон и углах эжекции 30, 90 и 150°. Расчеты показывают, что учет искажения начального состояния полем налетающего иона улучшает количественное согласие теории с экспериментом. Однако из-за большой скорости сталкивающихся частиц влияние искажения начального состояния полем многозарядного

4 ВМУ, № 6, физика, астрономия

иона на энергетические распределения электронов не так сильно, как при более медленных столкновениях с ³He²⁺.

В заключение отметим, что предложенное описание ионизации нейтрального атома многозарядными ионами, которое наряду с взаимодействием в конечном состоянии. при $Z_1/v_i \leq 1$ корректно учитывает искажение начального состояния атома мишени полем налетающего иона, хорошо согласуется с имеющимися экспериментальными данными [10—12]. Полученные результаты показывают, что с увеличением заряда и уменьшением скорости налетающего иона влияние искажения начального состояния на угловые и энергетические распределения электронов возрастает.

ЛИТЕРАТУРА

[1] Годунов А. Л., Сенашенко В. С.//Тез. докл. IX ВКЭАС. Рига, 1984. С. 91. [2] Годунов А. Л., Сенашенко В. С.//Тез. докл. X ВКЭАС. Ужгород, 1988. С. 98. [3] Годунов А. Л., Куникеев Ш. Д., Сенашенко В. С.//Физика плазмы. 1986. 12. С. 1355. [4] Меркурьев С. П., Фаддеев Л. Д. Квантовая теория рассеяния для систем нескольких частиц. М., 1985. С. 247. [5] Пресняков Л. П./Тр. ФИАН. 1970. 51. С. 20. [6] Ву Т. Ю., Омура Т. Квантовая теория рассеяния. М., 1969. С. 239. [7] Nordsieck А.//Phys. Rev. 1954. 93. Р. 785. [8] Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М., 1963. С. 313. [9] Fainstein P. D., Ponce V. H., Rivaro-Ia R. D./J. Phys. B. 1988. 21. Р. 287. [10] Prost M. Diplomarbeit. Frein Universität. Berlin. 1988. [11] Irby V. D. et al.//Phys. Rev. 1982. A 37. Р. 3612. [12] Berry S. D., Sellin I. A. Abstr. of Papers. VIII ICAP. Göteborg. 1982. Р. B51. [13] Green L. C. et al.//Phys. Rev. 1964. 98. Р. 757. [14] Platten H. et al.//Abstr. of Contr. Papers. XV ICPEAC. Brighton. 1987. P. 437. [15] Bernardi G. C. et al.//Phys. Rev. 1989. A40. P. 6863.

Поступила в редакцию 05.04.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1990. Т. 31, № 6

РАДИОФИЗИКА

УДК 621.371.3

ДЕНОРМАЛИЗАЦИЯ РАССЕЯННОГО ИЗЛУЧЕНИЯ В СВОБОДНОМ ПРОСТРАНСТВЕ

С. М. Голынский

(кафедра физики атмосферы и математической геофизики)

Рассматриваются возможности денормализации излучения, рассеянного при прохождении через плоский хаотический экран и распространяющегося далее в свободном пространстве. Обсуждаются вопросы моделирования начального распределения поля на экране по экспериментальным данным в плоскости наблюдения.

Общепринято считать, что распространяющееся в свободном пространстве рассеянное излучение нормализуется [1—3]. Однако в аналогичной с математической точки зрения задаче радиотехники показано, что при определенных условиях линейная система может денормализовать входной сигнал [4, 5]. В настоящем сообщении анализируется вопрос возникновения подобных ситуаций в волновых задачах.

Рассмотрим прохождение монохроматического излучения через безграничный хаотический экран, расположенный в плоскости z=0. Пусть $E_0(\rho')$ — граничное поле на экране, где $\rho'=(x', y')$ — двумер-