ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 548.732

ВЛИЯНИЕ РАЗМЕРОВ ИСТОЧНИКА И ПОГЛОЩЕНИЯ НА ФОКУСИРОВКУ СФЕРИЧЕСКОЙ РЕНТГЕНОВСКОЙ ВОЛНЫ ПРИ БРЭГГОВСКОЙ ДИФРАКЦИИ НА ДВУХ ИЗОГНУТЫХ КРИСТАЛЛАХ

Т. Чен, Р. Н. Кузьмин

(кафедра физики твердого тела)

Получены выражения, позволяющие провести теоретический анализ влияния конечности размеров источника и поглощения на фокусировку сферической рентгеновской волны при брэгговской дифракции в двухкристальной системе, состоящей из изогнутых во взаимно перпендикулярных плоскостях кристаллов.

Решение задачи двухволновой брэгговской дифракции в двухкристальной схеме (симметричный случай) приводит к возможности двумерной фокусировки сферической волны, исходящей из точечного источника, если геометрические параметры схемы удовлетворяют системе уравнений

$$\frac{1}{L_0} + \frac{1}{L_{12} + L_{hh}} = \frac{2}{R_1 \sin \theta_B},$$

$$\frac{1}{L_0 + L_{12}} + \frac{1}{L_{hh}} = \frac{2 \sin \theta_B}{\lfloor R_2},$$
(1)

где L_0 — расстояние от точечного источника до первого кристалла; L_{12} — расстояние между кристаллами; $L_{hh} = L_h - L_{12}$ — расстояние от второго кристалла до изображения точечного источника; L_h — расстояние, на котором фокусируется излучение первым цилиндрически изогнутым кристаллом в плоскости дифракции в отсутствие второго кристалла [1, 2]; $R_{1,2}$ — радиусы изгиба первого и второго кристаллов (предполагается, что в плоскости дифракции изогнут первый кристалл); θ_B — брэгговский угол.

Учитывая (1), для распределения интенсивности дважды дифрагированной волны в окрестности точки г (5, у) изображения точечного источника можно получить

$$I_{hh}(\mathbf{r},\,\xi_{s}) \sim \left| \exp\left\{ -iq_{0}\gamma\left(\frac{\xi_{s}}{\alpha_{0}L_{0}}-\frac{\xi}{\alpha_{h}L_{h}}\right) \right\} \right|^{2} \left| \frac{J_{2}(t)}{t} \right|^{2} I_{hh}(y), \qquad (2)$$

где $q_0 = \pi \chi_0 / \lambda \mu$; $\lambda - длина волны падающего излучения; <math>\mu = \cos \theta_B$; $\gamma = \sin \theta_B$; $\alpha_{0,h} = -\gamma (\gamma / L_{0,h} - 1 / R_1)$; ξ_s — координата точечного источника по оси, перпендикулярной направлению волнового вектора падающей волны, точно удовлетворяющей брэгговскому условню; $r(\xi, y)$ — вектор в плоскости, перпендикулярной направлению волнового вектора дважды дифрагированной волны, удовлетворяющей точному брэгговскому условию; $J_2(t)$ — функция Бесселя второго порядка; $t = A (L_h \xi_s / L_0 + \xi)$; $A = = \pi (\Lambda \mu | 1 - L_h / R_1 \gamma |)^{-1}$, $\Lambda = \lambda \gamma / (\chi_h \chi_{\overline{h}})^{1/2}$ — длина экстинкции; χ_0 , $\chi_{h,\overline{h}}$ — фурье-компоненты рентгеновской поляризуемости кристаллов; $I_{hh}(y)$ — распределение интенсивности по координате y, явный вид которого в настоящей работе нас не интересует.

ния величины χ_0 , q_0 , $\chi_{h,\tilde{h}}$ и Λ становятся комплексными. Используя (2), нетрудно убедиться, что влияние поглощения на распределение интенсивности фокусируемой волны мало. Действительно, определим дифракционную ширину максимума в (2), как расстояние, на котором интенсивность падает вдвое. Примем во внимание, что функция $J_2(t)/t$ имеет максимум при $t_{max}=2,30$ и падает вдвое. Примем во внимание, что функция $J_2(t)/t$ имеет максимум при $t_{max}=2,30$ и падает вдвое при $t_1=1,13$ и $t_2=3,56$. Тогда, например, для отражения (444) излучения Мо K_{α} от кристаллов кремния ($\chi_{0i} = =$ Im $\chi_0=1,65\cdot10^{-8}$, $\lambda=0,71$ Å, $\Lambda=34$ мкм) дифракционная ширина меняется при учете поглощения лишь на 0,5%. Легко получить, что добавки к квадрату модуля функции Бесселя в (2), возникающие из-за цоглощения, дают относительный вклад в интенсивность менее процента.

Для того чтобы исследовать совместное влияние конечности размера источника

и поглощения на фокусировку, необходимо усреднить интенсивность (2) по координатам всех точечных источников, составляющих протяженный источник размером 2a:

$$I_{hh}(\xi) \sim \exp\left\{-\frac{!2q_{0i}\gamma\xi}{\alpha_{h}L_{h}}\right\} \frac{1}{2a} \int_{-a}^{a} d\xi_{s} \exp\left\{-\frac{2q_{0i}\gamma\xi_{s}}{\alpha_{h}L_{0}}\right\} \left|\frac{J_{2}(t)}{t}\right|^{2}, \ q_{0i} = \operatorname{Im} q_{0}.$$
(3)

Роль поглощения при протяженном источнике будет сводиться к очень малому надению интенсивности (доли процента), поэтому ниже анализируется влияние более существенного фактора — конечности размера источника — на фокусировку. Рассмотрим снтуацию, когда $K = AL_h a/L_0 \ll t_0 = A\xi$ (источник малых размеров,

Рассмотрим снтуацию, когда $K = AL_h a/L_0 \ll t_0 = A\xi$ (источник малых размеров, $\xi \neq 0$). В этом случае интенсивность в точке ξ можно приближенно вычислить, разлагая функцию Бесселя в ряд Тейлора с центром в точке t_0 и ограничиваясь тремя членами разложения. Соответствующий интеграл (3) тогда равен

$$\frac{1}{2a} \int_{-a}^{b} d\xi_{s} \left| \frac{J_{2}(t)}{t} \right|^{2} \approx \left| \frac{J_{2}(t_{0})}{t_{0}} \right|^{2} + \frac{1}{(t_{0})^{2}} \left[\frac{J_{2}(t_{0})}{t_{0}} - J_{3}(t_{0}) \right]^{2} \frac{2}{3} K^{2} + \frac{J_{2}(t_{0})}{2(t_{0})^{2}} \left[J_{4}(t_{0}) - J_{2}(t_{0}) \right] K^{2}.$$

$$(4)$$

Приведем конкретные численные оценки для отражения (444) излучения Мо K_{α} , $R_1=1,5$ м и $L_h=0,4$ м. При $t_0=2,30$ и K=0,3 (2a=0,7 мкм) третье слагаемое в (4) в 25 раз меньше первого, а второе — меньше на 5 порядков. Третье слагаемое в (4) увеличивает дифракционную ширину на 2,4%, т. е. ширина меняется очень незначительно. Отметим, что выражение (4) позволяет найти малые добавки к интенсивности, вызванные малым (но конечным!) размером источника.

Интенсивность волны при малых \tilde{K} в точке $\xi=0$ можно оценить, используя разложение функции Бесселя $J_2(t)$ в ряд при малых значениях аргумента и вычисляя интеграл (3). Если K=0,3, то достаточно положить $J_2(t)/t \approx t/8$. В результате интенсивность в точке $\xi=0$ равна $K^2/192 \approx 10^{-4}$.

Рассмотрим теперь случай, когда K>5,2 (источник больших размеров). Учитывая поведение функции $J_2(t)/t$ при t>5,2, пределы интегрирования в (3) можно считать бесконечными для $\xi=0$. Получившийся интеграл является табличным [3] и равен

$$I_{hh}(\xi=0)=\frac{41}{15\pi K}.$$

При K=15 (2a=37 мкм для использованного выше типа излучения и тех же значений R_1 , L_h) I_{hh} ($\xi=0$) = 0,17 I_{max} , где $I_{max}\approx 0,03$. Таким образом, при K=15 «размытие» края изображения источника довольно существенно (17%). Реальной оценкой размера изображения при конечном источнике является сумма дифракционного размера точеного источника и конечного размера самого источника.

Если $\xi \neq 0$ и $K \gg A\xi$, интенсивность также можно оценить, распространяя пределы интегрирования в (3) на бесконечность. Так как $K \gg A\xi$ (и K > 5,2), то зависимость I_{hh} от $\xi \neq 0$ будет слабой, что указывает на размытие изображения в случае большого источника. Для K=20 и $0 < A\xi < 1,13$ и $I_{hh}(\xi) \approx 0,13$ $I_{max} \approx \text{const}(\xi)$. В случае точечного источника интенсивность при $0 < A\xi < 1,13$ от нуля до 0,5 I_{max} . По мере увеличения размера источника интенсивность в максимуме падает, в чем легко убедиться, принимая во внимание приведенные выше рассуждения и формулу (5). Это означает, что с ростом величины 2a эффект фокусировки ослабевает.

Таким образом, в настоящей работе продемонстрирована возможность получения из общего выражения (3) эффективных оценок интенсивности фокусирующейся волны, пригодных для теоретического анализа влияния размера источника на фокусировку. Малое влияние поглощения оценивается с помощью исходного выражения (3).

Отметим, что предложенные в работе способы приближенного вычисления интенсивности не годятся для источников «средних» размеров (1<K<5,2). Для таких источников вычисление интеграла (3) возможно лишь численно с применением ЭВМ.

ЛИТЕРАТУРА

[1] Габриелян К. Т., Чуховский Ф. Н., Пинскер З. Г.//ЖТФ. 1980. 50, № 1. С. 3. [2] Габриелян К. Т., Чуховский Ф. Н., Пискунов Д. И.//ЖЭТФ. 1989. 96, № 9. С. 834. [3] Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М., 1971.

Поступила в редакцию 10.04.90

(5)