УДК 537.534

n san ing sa

ИССЛЕДОВАНИЕ ЗАТРАТ ЭНЕРГИИ НА РАСПЫЛЕНИЕ АТОМА С поверхности кристалла

I. Моделирование на ЭВМ методом молекулярной динамики

В. Н. Самойлов

(кафедра общей физики для физического факультета) —

Методом молекулярной динамики исследованы закономерности обнаруженного ранее эффекта, состоящего в том, что эмитируемый с поверхности атом затрачивает энергию не только на преодоление сил притяжения к поверхности, но и в значительной степени — на отдачу окружающих атомов. Показано, что аналитические модели распыления дают неверную картину формирования суммарных затрат энергии, необходимых для распыления атома с поверхности, что приводит к некорректности формул для функции распределения распыленных атомов по внешним энергии и полярному углу.

Введение

За последние двадцать лет разработан целый ряд аналитических моделей распыления аморфных мишеней [1--6]. В них прежде всего рассматривается стадия развития каскада столкновений внутри мишени, а стадия эмиссии атома с поверхности заменяется действием потенциального барьера. Если ввести ось z, направленную от поверхности в глубь мишени, и считать, что полупространство z>0 заполнено атомами (как, например, в [4]) и рассматриваемый атом пересекает поверхность мишени z=0 с компонентой скорости $V_z<0$, то в рамках аналитических моделей распыления прослеживание траектории такого атома прекращается сразу по пересечении им плоскости z=0. На этой поверхности проводится преобразование энергии и полярного угла вылета атома, соответствующее притяжению атома к мишени в процессе эмиссии, которое аппроксимируется потенциальным барьером, как правило, плоской или сферической формы (см. [4]).

Замена стадии эмиссии в рамках аналитических моделей [2, 7] действием потенциального барьера является слишком упрощенной. Это позволило П. Зигмунду сделать вывод о том, что в таких моделях не учитывается эффект, состоящий в отклонении атома, пересекающего поверхность мишени под углом к нормали, в направлении нормали к поверхности вследствие отсутствия азимутальной симметрии в расположении рассеивающих центров [8].

Это отклонение в направлении нормали к поверхности происходит вследствие отталкивания эмитируемого атома от атомов поверхности в процессе вылета, т. е. уже тогда, когда координата z<0. При таком надповерхностном рассеянии часть энергии эмитируемого атома передается одному или нескольким атомам, с которыми происходит наиболее сильное столкновение. Так как эффект надповерхностного рассеяния в рамках моделей [2, 7] не учитывается, то в них не учитываются и затраты энергии эмитируемого атома при таком рассеянии. Это связано с тем, что в аналитических моделях распыления отсутствует представление о поверхности, состоящей из дискретных атомов.

В работе [9] была высказана идея о том, что затраты энергии, необходимые для распыления атома с поверхности кристалла, воз-

можно, превышают значение энергии связи. В расчетах методом молекулярной динамики [10, 11] было обнаружено, что эмитируемый с поверхности атом затрачивает энергию не только на преодоление сил притяжения к поверхности, но и на отдачу окружающих атомов, причем потери на отдачу могут доминировать в общей величине затрат энергии, необходимых для распыления атома с поверхности кристалла. В работе [12] также методом молекулярной динамики были получены распределения числа эмитируемых атомов по величине затрат энергии на распыление с поверхности монокристалла и из второго и третьего атомных слоев.

Следуя логике работы [9], в расчетах с использованием аналитических моделей распыления необходимо заменить величину энергии связи атома на поверхности E_b на величину средних суммарных затрат энергии, необходимых для распыления одного атома. Однако при такой замене предполагается, что затраты энергии на распыление атома с поверхности представляют собой универсальную величину (постоянство E_b предполагается при выводе формул для функции распределения распыленных атомов по энергии и углам в рамках аналитических моделей распыления). Для правомерности такой замены существен вопрос, зависят ли затраты энергии на распыление атома с поверхности от начальных энергии E_0 и углов вылета θ_0 н φ_0 . В настоящей работе рассчитаны и детально проанализированы зависимости затрат энергии на распыление от начальных параметров эмиссии.

Модель расчета

Использовалась модель молекулярной динамики [10, 11]. Кристалл моделировался с помощью блока, состоявшего из 207 атомов Си, расположенных в трех слоях, параллельных грани (111). Тепловые колебания атомов, возможные дефекты решетки и релаксация поверхностных слоев атомов монокристалла не учитывались. Взаимодействие всех атомов друг с другом описывалось потенциалом Борна—Майера $U(r) = A \exp \{-r/b\}$ с параметрами A = 22,5 кэВ, b = 0,196 Å. Атом выбивался из узла на поверхности с энергией E_0 под углами θ_0 и φ_0 . Полярный угол θ_0 отсчитывался от нормали к поверхности, азимутальный угол φ_0 , равный 30°, определял направление $\langle 011 \rangle$ — на ближайший атом в плоскости поверхности.

Интегрирование уравнений движения проводилось до тех пор, пока атом не достигал расстояния 4 Å от поверхности. Здесь для атома, преодолевшего плоский потенциальный барьер высотой $E_b=3,51$ эВ, рассчитывались энергия E_e и углы вылета θ_e и φ_e . По вычисленному значению E_e для каждого распыленного атома находились затраты на отдачу E_r . Учет потенциала отталкивания и потенциального барьера на поверхности приводил к аддитивности затрат энергии эмитируемого атома на отдачу E_r и на преодоление потенциального барьера E_b . Такой подход позволил разделить вклад этих механизмов потерь в общие затраты энергии и изучить их относительную роль в формировании особенностей эмиссии атомов с поверхности.

Описанная модель была ранее успешно применена нами в исследованиях эффекта фокусировки распыленных атомов по поверхностному механизму [10] и эффекта надповерхностного рассеяния [13]. Использованные потенциал взаимодействия, величина и форма потенциального барьера и другие особенности модели позволили состыковать настоящие расчеты с исследованиями, выполненными в рамках международной программы [14].

Результаты расчета

Для начального направления вылета вблизи нормали к поверхности, т. е. для углов θ_0 , меньших некоторого критического угла θ_0 сг (θ_0 сг $\simeq 35^\circ$), затратами на отдачу можно пренебречь (рис. 1). С ростом 1—сов θ_0 начинается сильный рост E_r/E_b , что объясняется тем, что столкновения с атомами поверхности становятся при фиксированной энергии E_0 все более жесткими. При больших значениях 1—сов θ_0 , т. е.

Рис. 1. Зависимости от 1—соз θ_0 затрат энергии распыленного атома на отдачу, нормированных на величину энергии связи E_b , E_r/E_b , для энергии $E_0=15$ (1), 25 (2) и 50 эВ (3) и углов вылета $\varphi_0=0$ (а) и $\varphi_0=30^\circ$ (б). Прямые $E_r/E_b=1$ представлены для сравнения (затраты на отдачу считались большими при превышении значения энергии связи)

при больших начальных углах θ_0 , затраты E_r/E_b достигают аномально высоких значений (для $E_0=50$ эВ, например, превышают 45 эВ) и пренебрежение ими в рамках аналитических моделей распыления, очевидно, недопустимо. Рост энергии E_0 приводит к возрастанию затрат на отдачу для фиксированного угла вылета θ_0 . Это связано с ростом передаваемой энергии с увеличением E_0 в рассматриваемом диапазоне.

В направлении на линзу из двух поверхностных атомов ($\varphi_0=0$ или $\varphi_0=60^\circ$) затраты энергии на отдачу существенно меньше, чем в направлении на атом, являющийся ближайшим соседом в плоскости поверхности ($\varphi_0=30^\circ$) — см. рис. 2. Такой вывод можно сделать также из анализа зависимостей затрат энергии на отдачу от начальной энергии вылета E_0 (рис. 3, *a*). Для $\theta_0\simeq70,5^\circ$, $\varphi_0=0$ затраты энергии не превышают 3,3 E_b ; максимум наблюдается потому, что при повышении E_0 в формировании потерь начинает доминировать фактор, связанный с уменьшением сечения взаимодействия вылетающего атома с атомами

77

линзы. Для $\theta_0 \simeq 70,5^\circ$, $\varphi_0 = 30^\circ$ наблюдается резкий рост затрат энергии с ростом E_0 . Аналитические модели распыления для любых E_0 и θ_0 дают значение $E_r/E_b \equiv 0$. Поэтому описание формирования энергетического спектра распыленных атомов в рамках аналитических моделей распыления не является корректным. Доля от первоначальной энергии атома, расходуемая на отдачу, может превышать 60% (рис. 3, 6). Для направления $\varphi_0 = 30^\circ$ эта доля энергии и для высоких значений E_0 не опускается ниже 40%.

Рис. 2. Зависимости от угла вылета φ_0 затрат энергия распыленного атома на отдачу, нормированных на величину E_b , E_r/E_b , для энергии $E_0=15$ (1), 25 (2) и 50 эВ (3) и начального угла $\theta_0 \simeq 70.5^\circ$ (1--cos $\theta_0=2/3$)

Средние затраты энергии распыленного атома на отдачу E_r/E_b (усреднение проведено по всем углам вылета) существенно возрастают с ростом E_0 (рис. 4, *a*), несмотря на уменьшение сечения взаимодействия вылетающей частицы с окружающими атомами, и достигают при высоких значениях E_0 значительной величины (затраты на отдачу считались большими при превышении значения энергии связи). Увеличение потерь с ростом E_0 связано с возрастанием переданной энергии в одном столкновении и с возрастанием вероятности распыления. Даже при сильном увеличении начальной энергии доля ее, затраченная в среднем на отдачу, не опускается ниже 20% (рис. 4, б). Немонотонный характер кривой, представленной на рис. 4, б, связан с влиянием двух конкурирующих факторов: с увеличением с ростом Е0 вероятности распыления эмитируемого атома и с уменьшением сечения взаимодействия вылетающего атома со своими соседями.

Зависимости, представленные на рис. 4, a и b, были получены усреднением по всем распыленным атомам для изотропного вылета 8101 эмитируемого атома из узла на поверхности в верхнюю полусферу для каждого из значений E_0 . Подобное распределение по углам вылета было использовано для нахождения вероятности распыления атома, выбитого с глубины z кристалла с энергией E_0 , в работе [14]. Для случая монокристаллической мишени изотропное распределение не отвечает действительности. Для того чтобы получить реальное значение средних затрат энергии распыленных атомов на отдачу для выбранного значения E_0 , необходимо провести усреднение затрат энергии с учетом действительного распределения атомов отдачи по углу вылета и по глубине (см., напр., работу [15] для случая бесструктурной мишени).

Рис. 3. Зависимости от начальной энергии E_0 затрат энергии распыленного атома на отдачу окружающих атомов, нормированных на величину энергии связи, E_{τ}/E_b (*a*), и доли затрат энергии на отдачу от начальной энергии, E_{τ}/E_0 (*b*), для вылета под начальными углами $\theta_0 \simeq 70.5^\circ$ (1—cos $\theta_0 = 2/3$), $\varphi_0 = 0$ (1) и $\varphi_0 = 30^\circ$ (2)

Однако известно, что доминирующую часть всех распыленных атомов составляют атомы верхнего слоя кристалла (согласно исследованиям [12] атомы верхнего слоя кристалла составляют 89% всех распыленных атомов). В то же время для случая аморфной мишени распределение атомов, выбитых с поверхности (z=0), по начальному углу вылета согласно аналитическим и компьютерным расчетам близко к изотропному (см. рис. 3, *а* работы [15]).

Обсуждение результатов и заключение

Полученные результаты можно распространить на случай поликристаллической и аморфной мишеней, так как основные затраты энергии на отдачу передаются атомам — ближайшим соседям, окружающим вылетающий атом. Очевидно, аналитические модели распыления дают неверную картину формирования суммарных затрат энергии, необходимых для распыления атома с поверхности. Учет эффекта аномальных потерь энергин в рамках аналитических моделей потребует перехода к рассмотрению вылета атомов с реальной поверхности, состоящей из дискретных атомов.

Рис. 4. Зависимости от начальной энергии E_0 средних (в расчете на один распыленный атом) затрат энергии на отдачу откружающих атомов, нормированных на величину энергии связи, \overline{E}_r/E_b (a), и доли средних затрат энергии на отдачу от начальной энергии, E_r/E_0 (б), для изотропного вылета атомов из узла на поверхности в верхнюю полусферу

Затраты энергии на отдачу зависят от начальных энергии и углов вылета, и в ряде случаев эта зависимость является довольно сильной. Поэтому потери E_r не являются аналогом энергии связи E_b , которая, как считается, не зависит от E_0 , θ_0 и φ_0 . Отсутствие универсальной величины суммарных затрат энергии на распыление атома приводит к некорректности формул для функции распределения распыленных атомов по внешним энергии E_e и углу θ_e , выведенных в работах [1-7], а вследствие этого и соответствующих формул для энергетических и угловых распределений распыленных частиц.

В работе [16] отмечалось, что 1) до настоящего времени величина затрат энергии, необходимых для распыления атома с поверхности твердого тела, остается неизвестной; 2) точное значение этой величины не было получено ни теоретически, ни экспериментально; 3) нет ясности, какие факторы влияют на величину этих затрат. Результаты, представленные в настоящей работе, в частности, являются ответом на эти вопросы.

Автор благодарен В. Е. Юрасовой за многочисленные стимулирующие обсуждения работы, А. Н. Матвееву за внимание и поддержку этих исследований и И. В. Хирнову (ХФТИ АН УССР, г. Харьков) за ценные советы и обсуждение результатов.

ЛИТЕРАТУРА

[1] Thompson M. W.//Phil. Mag. 1968. 18, N 152. P. 377. [2] Sigmund P.// //Phys. Rev. 1969. 184, N 2. P. 383. [3] Roosendaal H. E., Sanders J. B.//Rad. Eff. 1980. 52, N 3-4. P. 137. [4] Плетнев В. В., Семенов Д. С., Тельковскнй В. Г.//Поверхность. Физика, химия, механика. 1983. № 5. С. 5. [5] Garrison B. J.//Nucl. Instr. and Meth. in Phys. Res. 1986. B17, N 4. P. 305. [6] Yamamura Y., Muraoka K.//Nucl. Instr. and Meth. in Phys. Res. 1989. B42, N 2. P. 175. [7] Sigmund P.//Sputtering by Particle Bombardment. I./Ed. by R. Behrisch. Berlin; Heidelberg; New York: Springer. 1981. P. 9. [8] Sigmund P.//Nucl. Instr. and Meth. in Phys. Res. 1987. B 27, N 1. P. 1. [9] Garrison B. J., Winograd N., Lo D. et al.//Surf. Sci. 1987. 180, N 2-3. P. L129. [10] Самойлов В. Н. Препринт № 41/1987 физ. ф-та МГУ. М., 1987. [11] Самойлов В. Н.//Вторичная ионная и ионно-фотонная эмиссия: Тезисы докл. V Всесоюз. семинара, Харьков, 28-30 июня 1988 г. Харьков (ХГУ), 1988. Ч. 1. С. 86. [12] Shapiro М. Н.//Nucl. Instr. and Meth. in Phys. Res. 1989. **B42**, N 2. P. 290. [13]. Самойлов В. Н.//Маз. АН СССР, сер. физ. 1990. **54**, № 7. С. 1283. [14] Sigmund P., Robinson M. T., Baskes M. I., Hautaia M. et al.//Nucl. Instr. and Meth. in Phys. Res. 1989. **B36**. N 2. P. 110. [15] Vicanek M., Jimenez Rodriguez J. J., Sigmund P.//Ibid. P. 124. [16] Garrison B. J.//Nucl. Instr. and Meth. in Phys. Res. 1989. **B40**-41, 'Pt. 1. P. 313.

Поступила в редакцию 18.06.90