График зависимости фактора насыщения G_3 для длинноволновой формы хл«а» представлен на рис. 3. С увеличением ρ значение G_3 растет, особенно при $\rho > 10^{-3}$. Для остальных форм поведение факторов насыщения аналогичное.

Таким образом, на насыщение флуоресценции основное влияние оказывает синглет-синглетная аннигиляция. Что касается полученных приближенных формул (3), то они хорошо согласуются с точным решением для слабого возбуждения. Аналитическое выражение для сильного возбуждения получить достаточно сложно, так как для этого необходимо существенно упрощать рассматриваемую систему и не учитывать большую часть упомянутых особенностей организации фотосинтетического аппарата.

Рис. 3. Зависимость фактора насыщения третьей спектральной формы хл«а» от величины интенсивности возбуждающего излучения р

ЛИТЕРАТУРА

[1] Вогізоv А. Yu.//The Photosynthetic Bacteria. N. Y., 1978. Р. 323. [2] Seely G. R.//J. Theor. Biol, 1973. 40. Р. 189. [3] Кукушкин А. К., Тихонов А. Н. Лекции по биофизике фотосинтеза растений. М., 1988. [4] Демидов А. А., Чернявская Э. А.//Вестн. Моск. ун-та. Физ. Астрон. 1990. 31, № 4. С. 43. [5] Демидов А. А., Чернявская Э. А.//Там же. 1990. 31, № 5. С. 48. [6] Фадеев В. В., Демидов А. А., Клышко Д. Н.//Тр. Ин-та океанологии АН СССР. 1980. 90. С. 219. [7] Пащенко В. Э.//Квант. электроника. 1981. 8, № 12. С. 2569. [8] Демидов А. А. Дисс... канд. физ.-мат. наук. М. (МГУ), 1981.

Поступила в редакцию 21.06.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1991. Т. 32, № 2

УДК 621.378.325

ЧАСТОТНАЯ ПОДСТАВКА В КОЛЬЦЕВОМ ЛАЗЕРЕ С ВОЛНОЙ Автоподсветки, отражающейся от движущегося зеркала

Е. Л. Клочан, Е. Г. Ларнонцев. Г. Э. Тюльбашева

 $(HИИЯ\Phi)$

Рассмотрен твердотельный кольцевой лазер с волной автоподсветки: часть излучения выводится из резонатора лазера и подается на активную среду с помощью движущегося зеркала. Показано, что в этом случае использование волны автоподсветки может служить для получения частотной подставки в кольцевом лазере.

1. Введение

Метод волн автоподсветки (ВА) был предложен [1] и реализован [2, 3] для устранения конкурентного подавления одной из встречных волн (ВВ) в твердотельном кольцевом лазере (ТКЛ). Одна из возможных схем создания ВА показана на рисунке. Волна основного излучения E_1 через полупрозрачное зеркало 1 выводится из резонатора ТКЛ и после отражения от зеркала 2 возвращается в активную среду (АС), образуя волну автоподсветки E_a . При интерференции волн E_i

47

и E_a в AC наводится решетка инверсной населенности. Часть излучения волны E_a при дифракции на этой решетке излучается в направлении волны E_1 , изменяя коэффициент усиления E_1 . В работах [1-3]

исследовались характеристики ТКЛ с ВА, образуемыми при отражении от неподвижных зеркал. В этом случае наличие ВА сказывается только на амплитудной невзаимности ВВ.

В данной работе предлагается создавать ВА путем отражения от движущегося зеркала. В этом случае нз-за эффекта Доплера частота волны E_a будет отлична от частоты волны E_1 и в АС наведется движущаяся решетка инверсной населенности. Ниже будет показано, что в результате подпитки волны E_1 частью излучения решетке в ТКЛ возникает изстотная

(2)

волны Е_a, дифрагировавшей на решетке, в ТКЛ возникает частотная невзаимность ВВ.

Предлагаемый метод может быть использован для создания частотной подставки, позволяющей улучшить частотные характеристики кольцевых лазеров [4, 5].

2. Основные уравнения

Рассмотрим влияние ВА, создаваемой движущимся зеркалом, на невзаимность ВВ в ТКЛ, основываясь на схеме, представленной на рисунке. Запишем электромагнитное поле в АС в виде суммы полей трех волн:

$$\mathbf{E}(\mathbf{r}, t) = \operatorname{Re}\left[\sum_{1,2} \mathbf{e}_{1,2}\widetilde{\mathcal{E}}_{1,2} \exp\left\{j\left(\omega t \mp \mathbf{k}\mathbf{r}\right)\right\} + \mathbf{e}_{a}\widetilde{\mathcal{E}}_{a} \exp\left\{j\left(\omega t - \mathbf{k}_{a}\mathbf{r}\right)\right\}\right].$$
(1)

Здесь $\mathscr{E}_{1, 2, a} = E_{1, 2, a} \exp{\{j\varphi_{1, 2, a}\}}$ — медленно меняющиеся комплексные амплитуды ВВ и ВА соответственно.

Изменение частоты ВА при отражении от движущегося зеркала учитывается в комплексной амплитуде $\widetilde{\mathcal{S}}_a(t)$.

В целях упрощения задачи предполагается, что встречные волны имеют ортогональные поляризации ($e_1 \cdot e_2 = 0$), а волна E_a поляризована ортогонально по отношению к E_2 ($e_a \cdot e_2 = 0$). В этом случае решетка в АС наводится только волнами E_a и E_1 . Взаимодействие полей ВВ с решеткой инверсной населенности не учитывается, поскольку при отражении волны E_1 от решетки излучение распространяется в направлении ВА и не попадает в резонатор ТКЛ, а при отражении волны E_2 отраженная волна гасится невзаимным амплитудным элементом 3 (см. рисунок).

Комплексные амплитуды $\widetilde{\mathscr{E}}_a$ и $\widetilde{\mathscr{E}}_1$ связаны соотношением

$$\widetilde{\mathscr{E}}_{a} = \sqrt{K_{a}} \widetilde{\mathscr{E}}_{1} \exp\{j\psi(t)\},\$$

где $K_a = (1 - R_1)R_2T_3/R_1$ — отношение интенсивностей ВА и основной волны, определяемое коэффициентами отражения $R_{1,2}$ зеркал 1, 2 и коэффициентом пропускания T_3 вентиля 3; $\psi(1)$ — разность набега фаз на пути ВА и на пути основной волны E_1 . Вид зависимости $\psi(1)$

48

от времени определяется характером движения зеркала 2. В случае неподвижного зеркала 2 $\psi(t) = \text{const.}$

Учитывая (1) и (2), выражение для плотности инверсной населенности $N(\mathbf{r}, t)$ представим в виде

$$N(\mathbf{r}, t) = \bar{N} + (\tilde{N} \exp\{j[(\mathbf{k}_{\alpha} - \mathbf{k})\mathbf{r} - \psi(t)]\} + \kappa. c.), \qquad (3)$$

где \tilde{N} — комплексная амплитуда пространственной решетки инверсной населенности, \bar{N} — среднее значение $N(\mathbf{r}, t)$ по длине AC.

Коэффициент усиления волны E₁ в единицу времени x₁ с учетом взаимодействия BA с дополнительной решеткой определяется следующим выражением:

$$\varkappa_{1} = \frac{\sigma l}{T} \left\{ \overline{N} + \frac{l_{1}}{l} \cos \alpha_{a} \sqrt{K_{a}} \, \widetilde{N} \right\}, \tag{4}$$

где l_1 — длина области перекрытия ВА и волны E_1 , l — длина AC, α_a — угол между векторами электрического поля ВА и волны E_1 ($\cos \alpha_a = e_1 e_a$), σ — сечение лазерного перехода, T — время обхода светом резонатора.

Уравнения для пространственных гармоник $N(\mathbf{r}, t)$ имеют вид

$$\frac{d\bar{N}}{dt} = -\frac{\bar{N} - N_{\rm th} (1+\eta)}{T_1} - \frac{N_{\rm th}}{T_1} [(1+K_a)I_1 + I_2], \tag{5}$$

$$\frac{d\widetilde{N}}{dt} = -\frac{1}{T_1} \widetilde{N} \left[1 - j\dot{\psi}(t) T_1 \right] - \frac{1}{T_1} \sqrt{K_a} \cos \alpha_a N_{\text{th}} I_1.$$
(6)

Здесь $I_{1,2} = |E_{1,2}|^2 / I_s$ — безразмерные интенсивности BB; I_s — интенчевность насыщения; остальные обозначения стандартны (см. [1]).

Чэ (6) и (4) следует, что при создании ВА с помощью движущегося зеркала ($\psi(t) \neq 0$) коэффициент усиления волны является комплексным.

Уравнения для интенсивностей и разности фаз ВВ имеют вид

$$\frac{dI_{1,2}}{dt} = \left\{ -\frac{\omega}{Q} + \varkappa_{1,2}^{r} \right\} I_{1,2}, \tag{7}$$

$$\frac{d\Phi}{dt} = \frac{1}{2} \varkappa_{1}^{t} I_{1}, \tag{8}$$

где $\Phi = \phi_1 - \phi_2$ — разность фаз BB, $\varkappa_1^{r,i}$ — действительная и мнимая части величины \varkappa_1 , \varkappa_2^r — коэффициент усиления волны E_2 в единицу времени, который является действительной величиной и равен

$$\varkappa_2^r = \frac{\sigma l}{T} \, \overline{N} - \frac{\omega}{Q} \, \varkappa' I_2.$$

Дополнительные квадратичные потери для волны E_2 , описываемые коэффициентом \varkappa' , вводятся для выравнивания коэффициентов усиления ВВ. Механизм создания этих потерь не конкретизируется; в частности, они могут создаваться с помощью ВА от неподвижного зеркала, вводимой в АС симметрично E_{α} .

Решение системы уравнений (5)—(8) позволяет исследовать амплитудные и частотные невзаимности ТКЛ, возникающие при введении в АС волны автоподсветки с помощью зеркала, движущегося произвольным образом.

Отметим, что в уравнениях (5)—(8) не учитывается связь BB за счет обратного рассеяния. Это сделано с целью выделения в явном виде частотной невзаимности $d\Phi/dt$, обусловленной отражением ВА на решетке в АС. При наличии связи возникает дополнительная частотная невзаимность, приводящая к возникновению областей захвата ВВ и искажению частотной характеристики ТКЛ.

3. Знакопеременная частотная подставка

Рассмотрим представляющий практический интерес случай получения знакопеременной частотной подставки.

Пусть зеркало 2 колеблется с амплитудой *а* и частотой Ω_0 в направлении, нормальном плоскости зеркала. В этом случае

где β — угол падения волны **E**₁ на зеркало 2.

Система уравнений (5)—(8) для случая колебательного движения зеркала 2 решалась как численно, так и методом последовательных приближений по малому параметру χ :

$$\chi = 2\Omega_0 T_1 \frac{a\omega_0}{c} = 4\pi \Omega_0 T_1 \frac{a}{\lambda} \ll 1.$$
⁽¹⁰⁾

Здесь λ — длина волны света в вакууме.

Было показано, что с точностью до членов порядка χ^2 величина частотной подставки равна

$$\frac{d\Phi}{dt} = \frac{1}{2} \frac{\omega}{Q} \frac{l_1}{l} K_a \cos^2 \alpha_a \frac{\chi I_1^{(0)}}{1 + (\Omega_0 T_1)^2} \{\cos\left(\Omega_0 t + \varphi_0\right) + \Omega_0 T_1 \sin\left(\theta_0 t + \varphi_0\right)\},$$
(11)

$$I_{1}^{(0)} = \eta \frac{1}{(1+\kappa')(l_{1}/l) K_{a} \cos^{2} \alpha_{a} + \kappa'(1+K_{a})}$$

Величина I_1^0 представляет собой интенсивность I_1 в нулевом приближении по $\dot{\chi}$.

Изменение интенсивностей встречных волн $\Delta I_{1,2}$ за счет колебаний зеркала 2 является малым ($\Delta I_{1,2}/I_{1,2}^{(0)} \simeq \chi^2$) и содержит в себе как постоянную составляющую, так и вторую гармонику частоты Ω_0 . Отметим, что колебания интенсивностей $I_{1,2}$ происходят в противофазе. Выражения для $I_{1,2}$ с точностью до членов порядка χ^2 здесь не приводятся ввиду их громоздкости.

Результаты, полученные при численном решении системы уравнений (5)—(8), в случае $\chi \ll 1$ с хорошей точностью совпадают с полученными по формулам (11) и (12).

Расчеты также показали, что при выполнении неравенства $a/\lambda < 1$ даже при $\chi \ge 1$ частотная подставка $d\Phi/dt$ меняется по гармоническому закону с частотой Ω_0 . При этом амплитуду частотной подставки можно приближенно оценивать по формулам (11)—(12). Так, для лазера на YAG : Nd³⁺ при $\omega/Q=7,7\cdot10^7$ Гц, $T_1=2,4\cdot10^{-4}$ с, $l_1/l=0,1$, $K_a=0,1$, $\alpha_a\simeq$ $\simeq\beta\simeq0$, $\varkappa'=(l_1/l)K_a\cos^2\alpha_a$, $\nu_0=\Omega_0/2\pi=1$ кГц, $a/\lambda=0,1$, ($\chi=1,89$) и $\eta=0,1$ численные расчеты дают амплитуду подставки ($d\Phi/dt$)_{max}=6,06 кГц, а формула (12) дает ($d\Phi/dt$)_{max}=7,02 кГц.

где

При значениях $\chi \ge 1$, $a/\lambda < 1$ амплитуда осцилляций интенсивностей ВВ относительно их среднего значения I_0 становится значительной. Так, при приведенных выше значениях параметров $\left| \frac{I_{1,2} - I_0}{I_0} \right|_{max} = 0.44$. Если амплитуда колебаний зеркала 2 сравнима с длиной световой

волны $(a/\lambda \simeq 1)$, то колебания частотной подставки $d\Phi/dt$ и амплитуд $I_{1,2}$ становятся негармоническими.

В области гармонических колебаний $(a/\lambda < 1)$ амплитуда частотной подставки $d\Phi/dt$ линейно зависит от превышения накачки над порогом η и от амплитуды колебаний зеркала a/λ ; амплитуды осцилляций интенсивности $(I_{1,2}-I_0)/I_0$ линейно зависят от η и квадратично — от a/λ .

Расчеты показали также, что если $\chi = 4\pi\Omega_0 T_1 a/\lambda \gg 1$, то происходит подавление одной из ВВ или срыв генерации в обоих направлениях.

4. Постоянная частотная подставка

Постоянную частотную подставку можно получить при движении зеркала 2 с постоянной скоростью v (предполагается, что скорость v направлена перпендикулярно плоскости зеркала).

В этом случае набег фазы между Е₁ и ВА равен

$$\Psi(t) = \Psi_0 + 2\omega_0 \frac{v}{c} \cos\frac{\beta}{2} t, \qquad (13)$$

где с - скорость света.

При равномерном движении зеркала 2 ψ =const и система уравнений (5)—(8) имеет стационарное решение. Для $I_{1,2}$ и Ф оно имеет вид

$$I_{1} = \eta \frac{\varkappa_{2}^{'} [1 + (\dot{\psi}T_{1})^{2}]}{\varkappa_{2}^{'} (1 + K_{a}) [1 + (\dot{\psi}T_{1})^{2}] + (1 + \varkappa_{2}^{'}) \frac{l_{1}}{l} K_{a} \cos^{2} \alpha_{a}}, \qquad (14)$$

$$I_2 = \eta \frac{(l_1/l_2) K_a \cos^2 \alpha_a}{\varkappa_2' (1 + K_a) [1 + (\psi T_1)^2] + (1 + \varkappa_2') \frac{l_1}{l} K_a \cos^2 \alpha_a},$$
(15)

$$\dot{\Phi} = \frac{\omega}{Q} \frac{l_1}{l} K_a \cos^2 \alpha_a \frac{\psi T_1}{1 + (\psi T_1)^2} I_1.$$

Выражение (16) позволяет исследовать зависимость постоянной частотной подставки от скорости зеркала $v \sim \dot{\psi}$. Легко видеть, что при малых скоростях $(\dot{\psi}T_1 = 2\omega_0 \frac{v}{c} \cos \frac{\beta}{2} T_1 \ll 1)$ величина частотной подставки пропорциональна скорости зеркала v, а при больших скоростях $(\dot{\psi}T_1 \gg 1)$ частотная подставка уменьшается.

Из (14)—(15) следует, что интенсивность волны E_1 слабо зависит от скорости зеркала v, а волна E_2 с ростом v подавляется (при $\psi T_1 \gg \gg 1$).

Величина частотной подставки Φ достигает максимума при $\psi T_1 \simeq 1$. Считая $T_1 = 2,4 \cdot 10^{-4}$ с, $l_1/l = 0,1$, $K_a = 0,1$, $\eta = 0,1$, $\cos^2 \alpha_a \simeq \cos(\beta/2) \simeq 1$,

51

(16)

 $\omega/Q=10^7 \ \Gamma_{\rm II}, \ \varkappa_2'=\frac{1}{2}\left(\frac{l'}{l}\right)K_a\cos^2\alpha_a,$ получим, что $\psi T_1\simeq 1$ при скорости движения зеркала $v\simeq 0.6$ мм/с, а соответствующие значения $\dot{\Phi}$ и $I_{1,2}$ равны: $\dot{\Phi}=\dot{\Phi}_{\rm max}=2.5$ кГц, $I_1=I_2=\eta/2=0.05$.

5. Обсуждение результатов

Нами показано, что, вводя ВА в АС с помощью движущегося зеркала, можно получить как знакопеременную, так и постоянную частотную подставку. Вид возникающей частотной подставки определяется характеристиками движения зеркала.

Численные оценки показывают, что при малых скоростях движения зеркала (несколько мм/с) можно получать частотные подставки величиной до десятка килогерц.

Отметим, что возникновение частотной подставки связано с появлением зависящей от времени разности фаз между основной волной и ВА. Получить переменную разность фаз можно не только за счет движения зеркала 2, но и другими способами. Например, если в качестве ВА использовать дифрагировавшую волну, полученную при дифракции света на бегущей акустической волне, возникнет постоянная частотная подставка, описываемая выражением (18), в котором ψ надо заменить на частоту ультразвука. Легко показать, что максимальная частотная подставка возникает при частоте звука ~660 Гц. Для получения знакопеременной частотной подставки можно использовать любые элементы с переменным показателем преломления (например, электрооптические элементы), помещаемые на пути ВА.

Таким образом, описываемый метод позволяет получать истотные подставки в широком диапазоне частот и амплитуд без введения дополнительных элементов внутрь резонатора ТКЛ.

В заключение авторы выражают свою благодарность Н. В. Кравцову, привлекшему внимание авторов к рассматриваемому вопросу и сделавшему ряд полезных замечаний.

ЛИТЕРАТУРА

[1] Клименкова Е. В., Ларионцев Е. Г.//Квант. электроника. 1986. 13. С. 430. [2] Ларионцев Е. Р. Палеев М. Р., Шелаев А. Н./Там же. 1988. 15. С. 949. [3] Корнисско Л. С., Кравцов Н. В., Ларионцев Е. Г., Палеев М. Р., Парфенов С. В., Шелаев А. Н. Препринт НИИЯФ МГУ № 89-27/104. М., 1989. [4] Волновые и флуктуационные процессы в лазерах/Под ред. Ю. Л. Климонтовича. М., 1974. [5] Хошев И. М.//Радиотехн. и электроника. 1979. 24. С. 1230.

Поступила в редакцию 05.09.90