С. 565. [4] Девяткова Л. И. Иванова О. Н., Михайлин В. В. и др.//ДАН СССР. 1985. 283, № 6. С. 1339. [5] Абдулсабиров Р. Ю., Дубинский М. А. идр.// //Кристаллография, 1987. 32. С. 951. [6] Девяткова К. М., Иванова О. Н., Сейранян К. Б. и др.//ДАН СССР. 1990. 310, № 1. С. 72. [7] Девяткова К. М., Оганесян С. А., Иванова О. Н. и др.//ДАН СССР. 1990. 310, № 3. С. 577. [8] Камин. ский А. А., Соболев Б. П., Саркисов С. Э. и др.//Неорганические материалы. 1982. 18; № 2. С. 482. [9] Девяткова К. М., Иванова О. Н., Михайлин В. В. и др.//ДАН СССР. 1989. 306, № 2. С. 334. [10] Lox E.//Phys. Rev. 1966. 156, N 3. Р. 169. [11] Леймлен Г. Г. Морфология и генезис кристаллов. М., 1973. [12] Вайнштейн В. К., Фридкин В. М., Инденбом В. Л. Современная кристаллография. Т. 2. М., 1980. [13] Вайнштейн Б. К., Чернов А. А., Шувалов Л. А. Современная кристаллография Т. 3. М., 1980. [14] Келли А., Гровс Г. Кристаллография и дефекты в кристаллах. М., 1974. [15] Дистлер Г. И.//Проблемы современной кристаллография. М., 1975. С. 197. [16] Изотова А. Н., Александров В. Б.//ДАН СССР. 1970. 192, № 5. С. 1037.

Поступила в редакцию 22.05.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1991. Т. 32, № 2

УДК 669.3.24.775.871:538.24

ФИЗИЧЕСКИЕ СВОИСТВА СИСТЕМЫ ТВЕРДЫХ РАСТВОРОВ Си_х Mn_{1-х}Cr₂S₄

Л. И. Королева, А. И. Абрамович, С. Д. Баторова, М. Г. Михеев, Я. А. Кеслер

(кафедра общей физики для естественных факультетов)

Изучены магнитные и электрические свойства системы твердых растворов Си_х Mn_{1-x}Cr₂S₄ с x=0; 0,1; 0,2. Показано, что магнитный момент указанных соединений при температуре 4,2 К возрастает с увеличением х и соответствует валентному распределению $\widetilde{Cu}_x^{2+}\widetilde{Mn}_{1-x}^{2+}\widetilde{Cr}_2^{3+}S_2^{2-}$. Обнаружено, что введение меди в ферримагнитный полупроводник MnCr₂S₄ приводит к сильному увеличению температуры Кюри (~300 K) и сохранению полупроводниковой проводимости. Таким образом, нами найдены новые невырожденные полупроводники с температурами магнитного упорядочения выше комнатной, что является существенным в плане их практического применения. Предполагается, что такое увеличение T_c связано с существованием сильного s-d-обменного взаимодействия в составах с x=0,1 и 0,2. Оценена величина этого взаимодействия: AS ≈ 0.4 эВ.

В данной работе была получена и исследована система твердых растворов xCuCr₂S₄—(1-x)MnCr₂S₄. Рентгенографические исследования показали, что однофазными являются составы с x=0; 0,1; 0,2.

Известно, что крайний состав этой системы MnCr₂S₄ при температурах T > 5,5 К — ферримагнитный (ФИМ) полупроводник с температурой Кюри $T_c = 74 - 95$ К и удельным электросопротивлением $\rho =$ =4.10⁹ Ом см при T = 300 К [1-5]. Здесь ионы Mn²⁺ занимают тетраэдрические узлы A, а ионы Cr³⁺ — октаэдрические узлы B шпинельной структуры. Данные нейтронной дифракции [2, 3] показали, что при T <<5,5 К в отсутствие внешнего магнитного поля наблюдается угловая спиновая структура Яфета—Киттеля (структура 1). Известно, что треугольная спиновая структура Яфета—Киттеля возможна, например, в том случае, если взаимодействия В—В много сильнее А—В-взаимодействий. Оценка А—А-, В—В- и А—В-взаимодействий, проведенная на основе нейтронографических данных, измерений намагниченности в высоких магнитных полях при T > 5,5 К, точки Кюри T_c и асимптотической точки Кюри Θ , показала, что данное условие выполняется, а именно эти взаимодействия по оценкам [4] равны: $I_{AB}/k = -1,794$ К, $I_{AA}/k = -1,677$ К и $I_{BB}/k = +10$ К. Здесь k — постоянная Больцмана.

Другой крайний состав рассматриваемой системы CuCr₂S₄ — хорошо изученный металлический ферромагнетик с $T_c \simeq 364 - 420$ K, обладающий структурой шпинели и подробно описанный в работе [6].

Система твердых растворов $Cu_xMn_{1-x}Cr_2S_4$ была изучена в работе [7]. По данным этой работы для состава с x=0,2 $\rho=130$ Ом см (T==300 K), однако температура Кюри составов с x=0,1 и 0,2 не была измерена. В [7] указывается, что температура фазового перехода от структуры Яфета—Киттеля к ФИМ-упорядочению понижается при введении CuCr₂S⁴ в MnCr₂S₄ при x=0,05 до 3,5 K и при x=0,2 фазовый переход уже не детектируется вплоть до 1,6 K.

Рис. 1. Изотермы намагниченности при 4,2 К образцов системы $Cu_x Mn_{1-x} Cr_2 S_4$: x=0 (1); 0,1 (2) и 0,2 (3). На вставке: зависимость $\Delta\Theta(x)$ в двойном логарифмическом масштабе

На рис. 1 показаны кривые намагниченности о в зависимости от магнитного поля H для всех изученных составов при T=4,2 К. Спонтанная намагниченность σ_s была определена экстраполяцией линейных участков в области высоких полей к нулевому полю, и ее значения приводятся в таблице. Из рис. 1 и таблицы видно, что введение меди в

x	<i>Т_с,</i> Қ.	0 , K	σ _s , µ _В /мол.	^σ teor [,] µ _В /мол.	C ^{exp} M	C _M teor	μ _{ef}	р. Ом-см		E _A , əB		a Å
								78 K	300 K	78 K	300 K	2, A
0	66 [7]	10	1,06		2,78	8,13	4,72	4,0.1012	6,9.10	0 ,00 9	0,39	10,107
$ \begin{array}{c} 0, 1 \\ 0, 2 \end{array} $	386 398	133 158	1,52 1,75	1,47	$4,76 \\ 4,95$	7,73	$6,17 \\ 6,29$	$5,6\cdot 10^{3}$ 5,4	$1,6\cdot 10^2$ 2,0	$0,003 \\ 0,002$	0,26 0,015	$10,099 \\ 10,092$
· ',	۱ ۱					ĺ	1		,		.	

Основные характеристики образцов системы Cu_xMn_{1-x}Cr₂S₄

Здесь T_c — температура Кюри; θ — асимптотическая парамагнитная точка Кюри; σ_s — спонтанный магнитный момент на молекулу при T = 4,2 К; σ_{teor} — магнитный момент на молекулу, рассчитанный для валентного распределения $\overline{Cu}_x^{2+}\overline{Mn}_{1-x}^{2+}\overline{Cr}_3^{3+}S_4^{2-}$; C_M постоянная Кюри на молекулу; C_M^{teor} — значение постоянной Кюри, рассчитанное по теории Нееля для трех коллинеарных неэквивалентных подрешеток; μ_{ef} — эффективный магнитный момент на молекулу, равный \sqrt{SC} ; ρ — удельное электросопротивление; E_a энергия активации; a — параметр решетки.

MnCr₂S₄ приводит к увеличению σ_s . Полученное нами значение $\sigma_s =$ =1.06 ив/мол. для MnGr₂S₄ близко к полученным в работах [4, 5, 7] из экстраполяции кривых $\sigma(H)$ примерно в той же области магнитных полей. В этих работах показано, что такое значение оз соответствует валентному распределению $\widetilde{Mn}^{2+}[\widetilde{Cr}^{3+}]_2S_4^{2-}$. Величины σ_s , полученные для составов с x=0,1 и 0,2, оказались близкими к величинам магнитрассчитанных ных моментов. для валентного распределения $\vec{Cu}_x^{2+} \vec{Mn}_{1-x}^{2+} [\vec{Cr}^{3+}]_2 S_4^{2-}$. Они приводятся в таблице. При расчете использовались те же значения магнитных моментов на ион, что и в [7], а именно $\sigma(Cr^{3+})=2.9$ μ_B , $\sigma(Mn^{2+})=4.7$ μ_B и $\sigma(Cu^{2+})=1$ μ_B . Величины магнитных моментов, рассчитанные для других валентных распределений, включающих ионы Mn³⁺ и Cu¹⁺, значительно сильнее отличаются от полученных экспериментально.

Рис. 2. Температурная зависимость обратной молярной парамагнитной восприимчивости образцов системы $Cu_x Mn_{1-x} Cr_2 S_4$: x=0 (1); 0,1 (2) и 0,2 (3)

На рис. 2 приводится температурная зависимость обратной парамагнитной восприимчивости х всех изученных составов. Видно, что для состава с x=0 асимптотическая температура Кюри равна -10 К, что совпадает с величиной, полученной Лотгерингом [4]. Из рис. 2 видно также, что для составов с медью О положительна и более чем на порядок превышает величину |0| для MnCr₂S₄. Температура Кюри T_c составов с медью, полученная экстраполяцией наиболее крутой части кривой $\sigma_s(T)$ на ось температур, равна 386 К (x=0,1) и 398 К (x= =0,2). Для сравнения в таблице приводятся значения T_c для состава MnCr₂S₄ по данным [7]: 66 К и [8]: 74 К. Очевидно, такие высокие температуры Кюри составов с медью нельзя объяснить только сверхобменом между магнитоактивными ионами. Действительно, как говорилось выше, наиболее сильное сверхобменное В-В-взаимодействие не превышает здесь 10 К. В то же время величина Т_с указанных составов близка к T_c металлического ферромагнетика CuCr₂S₄ (364-420 K) [6]. Столь высокое значение T_c состава CuCr₂S₄ объяснено обменом через носители тока — дырки [6]. Однако составы с х=0,1 и 0,2 обладают полупроводниковым типом проводимости. В таблице представлены их значения удельного электросопротивления о и энергии активации E_a.

84

Обращает на себя внимание необычное поведение кривых $\chi^{-1}(T)$ для составов с медью. Известно, что для ФИМ указанные кривые подчиняются закону Нееля, описываемому гиперболой

$$\chi^{-1} = \frac{T - \Theta}{C} - \frac{\zeta}{T - \Theta'}, \tag{1}$$

где $C = \sum_{i} C_{i}$, а C_{i} — постоянные Кюри на соответствующий грамм-

ион, ζ и Θ' — постоянные [9]. У большинства ФИМ область нелинейности кривой $\chi^{-1}(T)$, обусловленная вторым членом в (1), превышает 200—300 К. Как видно из рис. 2, для составов с медью эта область много меньше: так, для состава с x=0,1 она равна ~80 К, а для состава с x=0,2 — ~65 К. Обращают на себя внимание и сильно заниженные по сравнению с рассчитанными для трехподрешеточного коллинеарного ФИМ значения постоянных *C*, представленные в таблице. Поведение парамагнитной восприимчивости указанных составов ближе к поведению ферромагнетика (Φ M), а именно описывается законом Кюри—Вейса (с повышенными значениями χ в области T_c) и эффективным магнитным моментом $\mu_{et} \sim 6 \mu_B/$ мол, что соответствует ферромагнитному упорядочению двух ионов Cr³⁺ на молекулу.

Указанные выше особенности магнитных свойств составов с медью можно объяснить существованием в них сильного s-d-обмена. и в частности наличием в них примесных ферронов, существующих около ионов Cu²⁺. Из-за выигрыша в энергии *s*-*d*-обмена дырке энергетически выгодно локализоваться около примеси, поддерживая около нее ФМ-порядок. Судя по величине эффективного магнитного момента. ФМ-порядок поддерживается среди ионов Cr³⁺. Очевидно, примесные ферроны проявляют себя в области температур, превышающих Тс соединения MnCr₂S₄. Действительно, слабые антиферромагнитные взаимодействия АВ и АА уже термически разрушены в этой температурной области, а ФМ-взаимодействия ВВ между ионами Сг³⁺ усиливаются s-d-обменом. Э. Л. Нагаевым показано, что при достаточно больших радиусах ферронов и их концентрациях как обменное, так и спиновое диполь-дипольное взаимодействия могут привести к их ФМ-упорядочению с довольно высокой точкой Кюри [10]. Очевидно, ферромагнетизмом ферронов и можно объяснить высокие точки Кюри указанных составов. Наличие примесных ферронов сильно увеличивает парамагнитную восприимчивость в районе Т_с, что хорошо видно из рис. 2.

Из зависимости Θ от увеличения концентрации легирующей добавки была определена величина энергии s—d-обмена AS (A — интеграл s—d-обмена, S — спин иона Cr³⁺), при этом использовались теоретические оценки Э. Л. Нагаева для широкой зоны [10]. Э. Л. Нагаев показал, что увеличение парамагнитной температуры Кюри с ростом легирующей добавки

$$\Delta \Theta_p = \frac{A^2 S \left(S+1\right) v}{8 \mu_F},$$

где энергия Ферми

$$\mu_{P} = \hbar^{2} \left(2\pi^{2} \frac{n}{a^{3}} \right)^{2/3} \frac{1}{2m^{*}}.$$

Здесь v — отношение числа носителей тока к числу магнитных ионов, a — постоянная решетки, m^* — эффективная масса носителей тока, n их концентрация (на элементарную ячейку). Эта формула была полу-

85

(2)

чена для широкозонных магнитных полупроводников при условии выполнения неравенства $AS \ll \sqrt{\mu_F W}$ (W — ширина зоны) и означает, что косвенный обмен через носители тока ренормирует интеграл прямого обмена путем добавления к нему интеграла косвенного обмена через носители тока. Полагая, что этот косвенный обмен происходит только между ионами Cr^{3+} , мы подставили в (2) следующие значения: S = = 3/2, v = x/2, $a \simeq 10$ Å, n = 8x (элементарная ячейка содержит 8 формульных единиц), $m^* = m_0$ (масса электрона) и получили

$$\Delta \Theta = C x^{1/3}$$

где.

 $C = 5.4 \cdot 10^{-3} (AS)^2$.

(4)

Хорошее соответствие экспериментальной зависимости $\Delta\Theta(x)$, представленной на вставке к рис. 1, с предсказываемой соотношением (3), свидетельствует о правильности принятых предположений. Из величины C, определенной из графика на вставке к рис. 1, с помощью формулы (4) была оценена энергия s-d-обмена. Она оказалась равной ~ 0.4 эВ, т. е. в указанном соединении имеет место сильный s-d-обмен.

ЛИТЕРАТУРА

11] Lotgering F. K.//Philips Res. Reports. 1956. 11. Р. 190. [2] Plumier R., Sougi M.//Compt. Rend. Acad. Sci. 1969. **B 286**, N 24. Р. B1549. [3] Nauciel-Bloch M., Castets A., Plumier R.//Phys. Lett. 1972. **39A**, N 4. Р. 311. [4] Lotegering F. K.//J. Phys. Chem. Sol. 1968. **29**, N 12. Р. 2193. [5] Robbins M., Gibart P., Holmes L. M., Sherwood R. C., Huli G. W.//AIP Conf. Proc. 1973. **10**. P. 1153. [6] Белов К. П., Третьяков Ю. Д., Гордеев И. В., Королева Л. И., Кеслер Я. А. Магнитые полупроводники — халькогенидные шиниели. М., 1981. [7] Мепуик N., Dwidht K., Wold A.//J. Appl. Phys. 1965. **36**, N 3. P. 1088. [8] Gibart P., Robbins M., Lambrecht V. G.//J. Phys. Chem. Sol. 1973. **34**, N 7. P. 1363. [9] Крупичка С. Физика ферритов и родственных им магнитных окислов. М., 1976. [10] Нагаев Э. Л. Физика магнитных полупроводников. М., 1979.

> Поступила в редакцию» 12.07.90

(3)