УДК 539.19+539.2

ИССЛЕДОВАНИЕ КОРРЕЛЯЦИОННЫХ СВОЙСТВ МНОГОЧАСТИЧНЫХ СИСТЕМ В РАМКАХ МЕТОДА ДВУХЧАСТИЧНЫХ ФУНКЦИОНАЛОВ ПЛОТНОСТИ

О. С. Еркович, В. В. Комаров, А. М. Попова, О. Мельсхаймер *, Х. Нейман * $(HИИЯ\Phi)$

Изучено влияние парных корреляций на свойства многочастичных ферми-систем. Предлагаемый метод является обобщением метода функционалов плотности и основан на представлении энергии системы как функционала диагонального элемента двух-частичной матрицы плотности. При этом обменно-корреляционные эффекты учитываются в рассмотрении без включения в модель дополнительных предположений относительно свойств этих эффектов.

- 1. Одним из наиболее перспективных направлений развития теории многочастичных систем является метод функционалов плотности, позволяющий представить основные характеристики многочастичных систем в виде однозначных функционалов плотности частиц в системе [1]. В основе этого подхода лежит утверждение о том, что полная энергия основного состояния ферми-системы представляет собой однозначный функционал плотности частиц, минимум которого достигается на функции плотности n(r), соответствующей истинному распределению частиц в системе. Наиболее существенные трудности в этом подходе возникают при описании обменно-корреляционных эффектов, которое осуществляется путем введения в выражение для функционала полной энергии системы дополнительных слагаемых, зависящих от функции n(r) и ее производных. Метод функционалов плотности, позволяющий получить хорошее количественное согласие с экспериментом при описании основных состояний многоэлектронных атомов, электронного газа в простых металлах и ряда других систем [1], оказывается практически непригодным при исследовании систем, на свойства которых существенно влияют корреляции между частицами. В предлагаемом подходе учет парных корреляций осуществляется в значительно более простой и полной форме по сравнению с традиционным.
- 2. Рассмотрим систему N нерелятивистских ферми-частиц, занимающую объем Ω . Взаимодействие частиц с внешним полем описывается потенциалом V(r), взаимодействие частиц между собой потенциалом $U(r_1, r_2)$. Гамильтониан такой системы имеет вид

$$H = T + V + U,$$

$$T = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} \right), \quad V = \sum_{i=1}^{N} V(r_{i}),$$

$$U = \sum_{i < j=2}^{N} U(r_{i}r_{j}),$$
(1)

где r_i — радиус-вектор i-й частицы, — $(1/2) \nabla_i^2$ — оператор кинетической энергии i-й частицы.

^{*} Марбургский университет, Германия.

Можно показать [2], что полная энергия E основного состояния системы, описываемого волновой функцией $\Phi(r_1\sigma_1r_1,\ldots,r_N\sigma_N\tau_N)$, нормированной на единицу, определяется выражением

$$E = (N - 1)^{-1} \int \{V(r_1) + V(r_2)\} \rho(r_1 r_2) dr_1 dr_2 + \int U(r_1 r_2) \rho(r_1 r_2) dr_1 dr_2 + + (N - 1)^{-1} \int \left(-\frac{1}{2} \nabla_1^2 - \frac{1}{2} \nabla_2^2 \right) \Gamma(r_1' r_2', r_1 r_2) \Big|_{\substack{r_1' = r_1 \\ r_2' = r_2}} dr_1 dr_2,$$
(2)

где $\rho(r_1r_2) = \Gamma(r_1r_2, r_1r_2)$ — диагональный элемент двухчастичной матрицы плотности

$$\Gamma(r'_1r'_2, r_1r_2) = \frac{1}{2}N(N-1)\sum_{\alpha,\tau}\int \Phi^*(r'_1\sigma_1\tau_1, r'_2\sigma_2\tau_2, r_3\sigma_3\tau_3, \dots, r_N\sigma_N\tau_N) \times$$

$$\times \Phi (r_1\sigma_1\tau_1, r_3\sigma_2\tau_2, r_3\sigma_3\tau_3, \ldots, r_N\sigma_N\tau_N) dr_3 \ldots dr_N,$$

$$\int \rho (r_1 r_2) dr_1 dr_2 = \frac{1}{2} N (N - 1), \tag{3}$$

 σ_i , τ_i — спин и изотопический спин i-й частицы. Покажем, что энергия состояния, описываемого волновой функцией $\Phi(r_1\sigma_1r_1,\ldots,r_N\sigma_N\tau_N)$, яв-

ляется однозначным функционалом $\rho(r_1r_2)$.

Проведем доказательство методом от противного, аналогично теореме Хоэнберга—Кона [3]. Допустим, что одной и той же функции $\rho(r_1r_2)$ соответствуют два различных потенциала — V(r) и V'(r), определяющие волновые функции $\Phi(r_1\sigma_1\tau_1,\ldots,r_N\sigma_N\tau_N)$ и $\Phi'(r_1\sigma_1\tau_1,\ldots,r_N\sigma_N\tau_N)$, не совпадающие, так как они являются решениями уравнения Шрёдингера с различными потенциалами. Используя обозначение

$$H' = T + V' + U, \ V' = \sum_{i=1}^{N} V'(r_i)$$

н учитывая свойства собственных функций оператора энергии, получим соотношения

$$E' = \langle \Phi' | H' | \Phi' \rangle < \langle \Phi | H' | \Phi \rangle = \langle \Phi | H + V' - V | \Phi \rangle =$$

$$= E + (N - 1)^{-1} \int \{ V' (r_1) + V' (r_2) - V (r_1) - V (r_2) \} \rho (r_1 r_2) dr_1 dr_2. \tag{4}$$

Поменяв в (4) местами штрихованные и нештрихованные величины, получим

$$E < E' + (N-1)^{-1} \int \{V(r_1) + V(r_2) - V'(r_1) - V'(r_2)\} \rho(r_1 r_2) dr_1 dr_2.$$
 (5)

Складывая (4) и (5), приходим к противоречию

$$E+E'$$

которое показывает, что для основного состояния системы V(r) соответствует однозначно (с точностью до аддитивной константы) функции $\rho(r_1r_2)$. Таким образом, энергия основного состояния системы также является однозначным функционалом $\rho(r_1r_2)$. Следует заметить, что в случае вырождения основного состояния доказательство сохраняет силу. Взаимная однозначность соответствия функции $\rho(r_1r_2)$ определенному значению энергии E не рассматривается.

Опираясь на (2), для функционала энергии $E(\rho)$ можно получить выражение

$$E[\rho] = (N-1) \int \{V(r_1) + V(r_2)\} \rho(r_1 r_2) dr_1 dr_2 +$$

$$+ \int U(r_1 r_2) \rho(r_1 r_2) dr_1 dr_2 + G_{\tau}[\rho],$$
(6)

где $G_T[\rho]$ — функционал кинетической энергии системы, имеющий представление, явно не зависящее от потенциалов V(r) и $U(r_1r_2)$ и применимое к случаю произвольного внешнего потенциала; произвольного фиксированного числа частиц и произвольного парного взаимо- действия между ними. При этом

$$G_{T}[\rho] = \langle \Phi | T | \Phi \rangle =$$

$$= (N-1)^{-1} \int \left(-\frac{1}{2} \nabla_{1}^{2} - \frac{1}{2} \nabla_{2}^{2} \right) \Gamma (r'_{1} r'_{2}, r_{1} r_{2}) \Big|_{r'_{1} = r_{2}} dr_{1} d_{2}. \tag{7}$$

Введем функционал $g_{T}[\rho]$, такой, что

$$G_T[\rho] = \int g_T[\rho] dr_1 dr_2. \tag{8}$$

Из (6) и (7) следует, что

$$g_T[\rho] = (N-1)^{-1} \left(-\frac{1}{2} \nabla_1^2 - \frac{1}{2} \nabla_2^2 \right) \Gamma(r_1' r_2', r_1 r_2) \Big|_{\substack{r_1' = r_1 \\ r_2' = r_2}}$$

Функционал $g_T[\rho]$ можно аппроксимировать аналитической функцией $\rho(r_1r_2)$ и ее производными, исходя из предположения об отсутствии явной зависимости $g_T[\rho]$ от вида потенциалов V(r) и $U(r_1r_2)$. Из этого предположения также следует, что для любых V(r) и $U(r_1r_2)$ функционал $g_T[\rho]$ будет иметь такой же вид, как в случае идеального газа ферми-частиц, т. е. в отсутствие взаимодействия фермионов как между собой, так и с внешними полями.

Для требуемого представления $g_T[\rho]$ используем функцию распределения [4] вида $f(r_1r_2, k_1k_2)$, которая является фурье-преобразованием матрицы плотности $\Gamma(r_1r_2, r_1'r_2')$:

$$\Gamma(r_1r_2, r_1'r_2') = \int dk_1 dk_2 f(r_1r_2, k_1k_2) \exp\{ik_1(r_1-r_1') + ik_2(r_2-r_2')\}. \tag{9}$$

Функция плотности $\rho\left(r_{1}r_{2}\right)$ связана с функцией $f\left(r_{1}r_{2},\;k_{1}k_{2}\right)$ соотношением

$$\rho(r_1r_2) = \sum_{\alpha} \int dk_1 dk_2 f(r_1r_2, k_1k_2). \tag{10}$$

В терминах функции распределения функционал $g_T[
ho]$ имеет вид

$$g_{\Gamma}[\rho] = \int dk_1 dk_2 \langle \varepsilon \rangle_{k_1 k_2} f(r_1 r_2, k_1 k_2), \qquad (11)$$

где $\langle \varepsilon \rangle_{k_1 k_2}$ есть оператор кинетической энергии в импульсном представлении:

$$\langle \varepsilon \rangle_{k_1 k_2} = \frac{1}{2} k_1^2 + \frac{1}{2} k_2^2.$$
 (12)

Заметим, что $f(r_1r_2, k_1k_2)$ как функция k_i при фиксированном k_j $(i \neq j; i, j = 1, 2)$ имеет вид [4] $f(k_i) = \Theta(k_i^2 - k_j^2)$, где k_F — импульс Ферми, зависящий неявно от r_1 , r_2 . Теперь найдем соотношение между k_F и функцией плотности $\rho(r_1r_2)$. Для этого воспользуемся уравнениями (10), откуда получим

$$\varrho(r_1 r_2) = \frac{1}{2} \left(\frac{p k_F^3}{6 \pi^2} \right); \tag{13}$$

проводя интегрирование в (11), учитывая (12), (10) и (13), получим

$$g_T[\rho] = \frac{3}{5} (N-1)^{-1} (72\pi^4/\epsilon^2) \rho^{4/3} (r_1 r_2), \tag{14}$$

где *p* — фактор вырождения.

Соотношения (12) и (14) рассчитаны в приближении, аналогичном приближению локальной плотности Хоэнберга—Кона [3]. Здесь предполагалось, что k_F — мало меняющаяся функция координат. Если это предположение отбросить, то зависимость функции распределения от одного из импульсов k_j при другом фиксированном k_i можно представить в виде

$$f(k_i k_j, r_1 r_2) = \Theta(k_F - k_j^2) + \frac{1}{2} (\nabla^2 k_F^2 + 2i k_j \nabla k_F^2) \delta'(k_F^2 - k_j^2) +$$

$$+ (1/3) [(\nabla k_F^2)^2 - 2 (\nabla k_j)^2 k_F^2] \delta''(k_F^2 - k_j^2) - (1/2) (k_j \nabla k_F)^2 \delta'''(k_F^2 - k_j^2).$$
 (15)

Здесь предполагается, что

$$|(\nabla_1 + \nabla_2) \rho(r_1 r_2)|/\rho(r_1 r_2) \ll k_F. \tag{16}$$

Отсюда следует, что

$$g_{T}[\rho] = (N-1)^{-1} \left\{ \frac{3}{5} \left(\frac{72\pi^{4}}{\rho^{2}} \right) \rho^{4/3} (r_{1}r_{2}) + \left[\frac{5}{576} \frac{+(\nabla_{1} + \nabla_{2}) \rho (r_{1}r_{2})^{2}}{\rho (r_{1}r_{2})} - \frac{1}{48} \frac{(\Delta_{1} + \Delta_{2}) \rho (r_{1}r_{2})}{\rho^{1/3} (r_{1}r_{2})} \right] \right\}.$$
(17)

Для постоянного числа частиц функционал $E[\rho]$ имеет минимум на $\rho(r_1r_2)$, соответствующей реальному состоянию системы. Это условно может быть выражено соотношением

$$\frac{\delta}{\delta\rho(t_1r_2)}\left\{E\left[\rho\right] - \mu\int\rho(r_1r_2)\,dr_1dr_2\right\} = 0,\tag{18}$$

где µ — постоянная Лагранжа.

Для решения конкретных задач можно воспользоваться уравнением Лагранжа (18), где $E[\rho]$ определяется выражениями (6), (8), (17). В этом случае можно получить дифференциальное уравнение относительно $\rho(r_1r_2)$.

Кроме того, функция $\rho(r_1r_2)$ и связанные с ней характеристики ферми-системы могут быть определены с помощью вариационного расчета. Успех этого метода определяется удачным выбором пробной функции $\rho(r_1r_2)$. Здесь можно воспользоваться результатами работ [5], где получено асимптотическое выражение для волновой функции системы двух частиц в поле:

$$\Phi(r_1r_2) \approx C_1 \exp\{-\alpha_1|r_1|\} \exp\{-\alpha_2|r_2|\} + C_2 \exp\{-\beta \sqrt{r_1^2 + r_2^2}\}$$

где первое слагаемое отвечает независимой связи каждой частицы в поле, а второе — связи пары частиц с полем, параметры α_1 и α_2 зависят от энергии связи частиц с полем.

На основании приведенного выше выражения для волновой функции можно построить пробную функцию $\rho(r_1r_2)$ в каждом конкретном

случае.

3. В качестве примера рассмотрим поведение электронного газа вблизи поверхности раздела металл—вакуум. Для описания металла воспользуемся моделью желе, в которой заряд ионов решетки $n_+(r)$ предполагается равномерно распределенным по всему объему металла: $n_+(r) = \bar{n}\Theta(-z)$.

Потенциал внешнего поля (в данном случае потенциал поверхно-

сти) V(r) создается положительным зарядом ионов $n_{+}(r)$:

$$V(r) = -\int n_{+}(r')(|r-r'|)^{-1}dr',$$

где знак «—» учитывает отрицательный заряд электрона; взаимодействие между электронами описывается кулоновским потенциалом

$$V(r_1r_2) = (|r_1 - r_2|)^{-1}$$
.

При выборе пробной функции $\rho(r_1r_2)$ было учтено, что электроны в бесконечно большом объеме металла можно рассматривать в модели желе как идеальный газ невзаимодействующих частиц. Введение в рассмотрение поверхности раздела металл—вакуум (для полубесконечного объема) нарушает трансляционную симметрию только в направлении оси 0Z, следовательно, допустимо пренебречь корреляцией электронов в плоскости, параллельной поверхности раздела металл—вакуум, и учесть корреляцию между слоями электронного газа, параллельными границе металла. В этом случае пробная функция $\rho(r_1r_2)$ представляется в виде

$$\rho(r_1r_2) = C\{\Phi_1^2(z_1) \Phi_2^2(z_2) + \Phi_1^2(z_2) \Phi_2^2(z_1) + \alpha\Phi_1(z_1) \Phi_2(z_2) \Phi_1(z_2) \Phi_2(z_1)\},$$

а волновая функция одной частицы $\Phi_l(z)$ имеет вид

$$\Phi_{l}(z) = \left(1 - \frac{1}{2} \exp{\{\beta_{l}z\}}\right) \Theta(-z) + \frac{1}{2} \Theta(z) \exp{\{-\beta_{l}(z)\}}, \ l = 1, \ 2,$$

где β_1 , β_2 — вариационные параметры, $\beta_1 > 0$, $\beta_2 > 0$.

Постоянная $C = (1/2) \bar{n}^2 (2+\alpha)^{-1}$ определена условием нормировки (3), а постоянная

$$\alpha = -(3/2)(\beta_1 + \beta_2)^2(\beta_1^2 + \beta_1\beta_2 + \beta_2^2)^{-1}$$

-- условием конечности потенциала

$$V_{m}(r) = -\int (n_{+}(r') - n(r')) (|r - r'|)^{-1} dr',$$

$$n(r') = \frac{2}{N-1} \int \rho(r'r'') dr'',$$

создаваемого поверхностью металла, во всех точках пространства.

В результате численных расчетов были определены значения вариационных параметров β_1 и β_2 , высота дипольного барьера

$$D = \lim_{z \to -\infty} V_m(r) - \lim_{z \to +\infty} V_m(r),$$

работа выхода электронов из металла

$$A = D - \left\langle \frac{\delta G_T[n]}{\delta n} \right\rangle,$$

где символ (...) обозначает усреднение по объему металла. Результаты расчета для различных металлов приведены в табл. 1 и 2 в сравнении

Таблица 1

Металл	rs	βι	₽.	Д, ∋В	D, 9B [6]	D, 9B [7]
Cs Rb Na Li Ag Cu Ca Mg Zn Be Al Sn W Re	5,54 5,14 3,93 3,26 2,40 2,12 3,22 2,65 2,29 1,87 2,07 2,07 2,37 1,62 1,50	0,500 0,502 0,667 1,789 1,469 1,437 1,788 1,436 1,579 1,797 1,782 1,794 1,794	0,500 0,502 0,656 1,785 1,349 1,344 1,784 1,509 1,769 1,769 1,786 1,451 1,776 1,696	0,041 0,075 0,226 0,750 2,05 3,26 1,00 2,17 2,11 4,00 3,50 2,05 5,50 6,00	0,20 0,27 1,00 2,70 4,50 5,76 1,78 3,50 4,80 	0,80 0,50 0,90 2,03 3,50 1,00 2,17 — — 3,87

Таблипа 2

Металл	А , эВ	А, эВ [6]	A, aB [7]	
Cs	1,82	2,64	1,81	
Rb	2,26	2,71	2,16	
Na Li	$\frac{2,36}{2,56}$	2,93	$\begin{bmatrix} 2,35 \\ 2,38 \end{bmatrix}$	
Āg	3,78	3,19	4,30	
Cu [4,41	3.32	4,40	
Ca	2,56	3,11	2,80	
Mg Zn	4,00 4,47	3,33 3,50	3,64 4,24	
Be	3,77	3,75	3,92	
Ai	4,19	3,64	4,25	
Sn	4,43	3,45	4,33	
W Re	4,47 4,95	3,91 3,98	4,50 5,00	
ŊΈ	7,50	0,50] 3,00	

с результатами, полученными в модели желе методом функционалов плотности [6], экспериментально определенными значениями A [7] и полуэмпирическими значениями D [6]. Кроме того, в табл. 1 указано значение среднего расстояния между электронами

$$r_s = \left[\frac{3}{4} (\pi \bar{n})^{-1}\right]^{1/3}$$
.

Как видно из таблиц, результаты настоящей работы согласуются с экспериментом существенно лучше, чем результаты вариационного расчета Смита [6], выполненного в рамках одночастичного метода функционалов плотности с использованием тех же модельных представлений о свойствах металла.

4. Предлагаемый метод может быть применен к анализу основных состояний системы с любыми потенциалами V(r) и $U(r_1r_2)$, в частно-

сти атомов и ионов. Были выполнены вариационные расчеты энергий основных состояний некоторых атомов.

В пренебрежении релятивистскими эффектами гамильтониан атома определен выражением

$$H = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_{i}^{2} - \frac{Q}{|r_{i}|} \right) + \sum_{i< j=1}^{N_{i}} |r_{i} - r_{j}|^{-1}.$$

где Q — заряд ядра, N — число электронов в атоме. Пробная функция была выбрана в виде

$$\varrho(r_1r_2) = C_1\{1 - C_2 \exp\{-\alpha | r_1 - r_2|\}\} \exp\{-\beta (|r_1| + |r_2|)\},$$

 C_2 , α , β — вариационные параметры.

Численный расчет привел к значениям полной энергии для основных состояний атомов C, N и O, равным — 1020, —1475 и —2030 эВ соответственно.

Следует предположить, что метод двухчастичных функционалов плотности может быть применен для анализа не только нейтральных атомов и положительных ионов, но и отрицательных ионов, существование которых обусловлено обменно-корреляционными эффектами.

5. Метод двухчастичных функционалов плотности допускает обобщение на случай, когда потенциалы взаимодействия частиц с внешним полем и между собой зависят не только от координат частиц, но и от их спина о и изоспина т:

$$H = T + V + U,$$

$$T = \sum_{i=1}^{N} \left(-\frac{1}{2} \nabla_i^2 \right), \quad V = \sum_{i=1}^{N} V(r_i \sigma_i \tau_i),$$

$$U = \sum_{i < j=1}^{N} U(r_i \sigma_i \tau_i, r_j \sigma_j \tau_j).$$

В этом случае систему, описываемую волновой функцией $\Phi(r_1\sigma_1\tau_1,...,r_N\sigma_N\tau_N)$, удобно характеризовать диагональным элементом $\rho(r_1\sigma_1\tau_1,r_2\sigma_2\tau_2)$ двухчастичной матрицы плотности $\Gamma(r_1'\sigma_1'\tau_1',r_2'\sigma_2'\tau_2',r_1'\sigma_1\tau_1,r_2\sigma_2\tau_2)$, зависящей от спина и изоспина:

$$\Gamma\left(r_{1}^{\prime}\sigma_{1}^{\prime}\tau_{1}^{\prime}, r_{2}^{\prime}\sigma_{2}^{\prime}\tau_{2}^{\prime}, r_{1}\sigma_{1}\tau_{1}, r_{2}\sigma_{2}\tau_{2}\right) =$$

$$= \frac{N(N-1)}{2} \sum_{\sigma_{1}...\sigma_{N}} \int_{\tau_{1}...\tau_{N}} dr_{3} ... dr_{N} \Phi^{*}\left(r_{1}^{\prime}\sigma_{1}^{\prime}\tau_{1}^{\prime}, r_{2}^{\prime}\sigma_{2}^{\prime}\tau_{2}^{\prime}, r_{3}\sigma_{3}\tau_{3}, ... \right)$$

$$..., r_{N}\sigma_{N}\tau_{N} \Phi\left(r_{1}\sigma_{1}\tau_{1}, r_{2}\sigma_{2}\tau_{2}, r_{3}\sigma_{3}\tau_{3}, ..., r_{N}\sigma_{N}\tau_{N}\right),$$

$$\Phi\left(r_{1}\sigma_{1}\tau_{1}, r_{2}\sigma_{2}\tau_{2}\right) = \Gamma\left(r_{1}\sigma_{1}\tau_{1}, r_{2}\sigma_{2}\tau_{2}, r_{1}\sigma_{1}\tau_{1}, r_{2}\sigma_{2}\tau_{2}\right),$$

$$\Phi\left(r_{1}r_{2}\right) = \sum_{\sigma,\tau} \Phi\left(r_{1}\sigma_{1}\tau_{1}, r_{2}\sigma_{2}\tau_{2}\right).$$

В этом случае полная энергия системы E определяется выражением

$$E = G_{T} \left[p \left(r_{1} r_{2} \right) \right] + \sum_{\alpha, \tau} \int dr_{1} dr_{2} \left\{ V \left(r_{1} \sigma_{1} \tau_{1} \right) + V \left(r_{2} \sigma_{2} \tau_{2} \right) \right\} \times$$

$$\times \rho \left(r_1\sigma_1\tau_1, r_2\sigma_2\tau_2\right) \frac{1}{(N-1)} + \sum_{\sigma,\tau} \int dr_1 dr_2 \times$$

$$\times \{U(r_1\sigma_1\tau_1, r_2\sigma_2\tau_2)\} \rho(r_1\sigma_1\tau_1, r_2\sigma_2\tau_2),$$

где функционал $G[\rho]$ определен соотношениями (8) и (17). Полученный результат может быть применен, в частности, для описания основных состояний систем нуклонов.

В заключение следует отметить, что предлагаемый метод представляет собой не просто схему расчета, а является новым физическим подходом к описанию ферми-газа, учитывающим корреляционные и обменные эффекты в исходной формулировке и в силу этого обладающий гораздо более широкой областью применения, чем одночастичные подходы.

ЛИТЕРАТУРА

[1] Теория неоднородного электронного газа/Под ред. С. Лундквиста, Н. Марча. М., 1987. [2] Марч Н., Янг У., Сампантхар С. Проблемы многих тел в квантовой механике. М., 1969. [3] Нопепвет в Р., Койп W.// Phys. Rev. 1964. 136, N 3B. Р. 864. [4] Киржниц Д. А. Полевые методы теории многих частиц М., 1963. [5] Комаров В. В., Попова А. М., Шаблов В. Л.// ЭЧАЯ. 1983. 14, № 2. С. 329; Кошаточ V. V., Ророча А. М., Shablov V. L.// J. Mat. Phys. 1980. 21, N 4. Р. 554. [6] Smith J. R.// Phys. Rev. 1969. 181, N 2. Р. 522. [7] Достижения электронной теории металлов/Под ред. П. Цише, Г. Леманиа. Т. 2. М., 1984.

Поступила в редакцию 18.12.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1991. Т. 32, № 4

УДК 539.1.01

О ГРАВИТАЦИОННОМ ИЗЛУЧЕНИИ В СЛУЧАЕ НЕНУЛЕВОЙ МАССЫ ГРАВИТОНА

Ю. М. Лоскутов

(кафедра квантовой теории и физики высоких энергий)

Найдена интенсивность излучения массивных гравитонов произвольным пространственно-ограниченным источником и показана ее положительная определенность.

1. Введение

Последовательно придерживаясь полевых методов построения классических физических теорий, гравитационное поле $\Phi^{*\lambda}(x)$ следует также рассматривать как материальное физическое поле в фундаментальном пространстве Минковского [1, 2, 3], метрика $\gamma_{\alpha\beta}(x)$ которого определяется выбором системы отсчета и координат x^* в ней. Как и в любой полевой физической теории, плотность лагранжиана \mathcal{L}_g гравитационного поля строится на основе требования ковариантности \mathcal{L}_g относительно общекоординатных преобразований в четырехмерном