кального поля. Характерного для однородных ассоциатов расщепления электронных уровней и связанного с этим появления новых полос поглощения для исследованных нами разнородных ассоциатов не обнаружено.

ЛИТЕРАТУРА

[1] Левшин Л. В., Салецкий А. М. Люминесценция и ее измерения. М.,. 1989. [2] Натаі S.// Bull. Chem. Soc. Jap. 1985. 58. Р. 2099. [3] Левшин В. Л., Баранова Е. Г.// Изв. АН СССР, сер. физ. 1958. 22. С. 1038. [4] Салецкий А. М., Шекунов В. А., Южаков В. И.// Теор. и эксперимент. химия. 1987. № 3. С. 368. [5] Bojarski C., Obermuller G.// Acta Phys. Polon. 1975. А50. Р. 389. [6] Левшин Л. В., Рыжиков Б. Д., Савельев В. П. // Вестн. Моск. ун-та. Физ. Астрон. 1974. 13, № 5. С. 530. [7] Низамов Н., Джумадинов Р. Х., Атохаджаев А. К. // Изв. АН СССР, сер. физ. 1975. 39, № 11. С. 2382. [8] Южаков В. И. // Успехи химии. 1979. № 11. С. 2007.

Поступила в редакцию» 24.12.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1991. Т. 32, № 4

УДК 535.3:551.463

ИЗМЕНЕНИЯ ПОЛОСЫ ФЛУОРЕСЦЕНЦИИ ПРИРОДНОГО РАСТВОРЕННОГО ОРГАНИЧЕСКОГО ВЕЩЕСТВА ПОД ДЕЙСТВИЕМ ЛАЗЕРНОГО УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ

С. В. Пацаева, Е. М. Филиппова, В. В. Чубаров, В. И. Южаков

(кафедра общей физики для физического факультета)

Исследуется влияние импульсного излучения азотного лазера ЛГИ-505 на спектры флуоресценции растворенного органического вещества в водной среде. Изучен широкий набор режимов облучения проб и определен оптимальный, при котором фотохимические процессы вносят в спектр искажения, не превышающие 10%.

Природное растворенное органическое вещество (РОВ), которое содержится в различных концентрациях во всех без исключения типах вод, представляет собой интересный объект спектроскопии. В процессе приготовления из природных вод воды различного назначения (питьевой, технологической и т. д.) РОВ переходит в эти воды, практически не меняя своих спектральных характеристик (полос поглощения, флуоресценции). Различная вода (морская, речная, озерная, болотная и т. д.) содержит РОВ в разной концентрации, которая поэтому может быть естественным индикатором при изучении процессов: смешения разных типов вод (в устьях рек, на границах океанических течений и т. п.). РОВ может быть использовано и при изучении таких глобальных процессов, как перенос вещества между океаном, атмосферой и литосферой. Сказанное определяет интерес к созданию методов экспрессного дистанционного контроля РОВ. Одним из таких методов является лазерная флуориметрия с калибровкой по сигналу комбинационного рассеяния воды [1, 2]. При разработке этого метода возникла проблема учета изменений полосы флуоресценции РОВ под действием возбуждающего лазерного излучения.

Оказалось, что эта задача имеет более широкое значение, и ее решение, по-видимому, позволит получить информацию о природе по-

лосы флуоресценции РОВ, а возможно, и о строении этого интересного природного органического комплекса.

Ранее в работах [3, 4] было исследовано влияние солнечного ультрафиолета и УФ-излучения ксеноновой лампы на спектры флуоресценции РОВ в морской воде и показано, что облучение морской воды непрерывным светом в спектральном диапазоне 290—340 нм в течение нескольких часов приводит к уменьшению интенсивности флуоресценции РОВ, уменьшению оптической плотности в области 290÷340 нм и увеличению ее в области $340 \div 390$ нм. Облучение в спектральном диапазоне $340 \div 390$ нм приводит к обратному эффекту: возрастанию интенсивности флуоресценции, возрастанию оптической плотности в области $290 \div 340$ нм. Величина эффекта составляет в среднем 20-30%. Объяснение данного явления в этих работах не приведено, но предполагается, что изменение интенсивности флуоресценции РОВ определяется двумя процессами: фоторазложением РОВ и фотохромными изменениями части РОВ. Время естественной релаксации исходных флуоресцентных характеристик РОВ морской воды составляет 8-10 ч.

В настоящей работе исследуется влияние импульсного излучения азотного лазера на спектры флуоресценции РОВ в водной среде. Азотный лазер был выбран нами для проведения исследований, поскольку в настоящее время он чаще других типов лазеров применяется для лазерной диагностики РОВ в технологических и природных водах [1, 2, 5]. Этот лазер позволяет осуществить различные режимы импульсного воздействия на водную среду и возбуждения оптического отклика: от режима одиночных вспышек до цуга импульсов с частотой следований 1 $\Gamma ц \div 1 \kappa \Gamma ц$. В совокупности с использованием разных скоростей прокачки воды через возбуждаемый объем может быть реализован широкий набор режимов облучения и регистрации спектров РОВ.

Для проведения исследований нами была собрана экспериментальная установка на базе азотного лазера и оптического многоканального анализатора (OMA). Схема установки приведена на рис. 1. Излу-

Рис. 1. Схема экспериментальной установки

чение азотного лазера ЛГИ-505 (λ =337 нм, P=20 кВт в импульсе, τ = =8 нс) использовалось одновременно как для облучения исследуемой пробы, так и для возбуждения флуоресценции и комбинационного рас-

77

сеяния воды. Водный раствор помещался в кварцевую кювету и прокачавался с помощью перистальтического насоса, обеспечивающего герметичность исследуемого раствора. Число лазерных импульсов n, попадающих в один и тот же объем пробы, варьировалось частотой повторения лазерных импульсов ($f=1\div1000$ Гц) и скоростью прокачки пробы насосом ($0,01\div1$ л/ч). Кроме того, была проведена серия экспериментов в режиме без прокачки воды через возбуждаемый объем. Спектры флуоресценции регистрировались в режиме параллельного детектирования оптическим многоканальным анализатором *Plasma Monitor* (модель 1451) фирмы *PARC* (США), имеющим 500 спектральных каналов и дисперсию 0,37 нм/канал.

В работе исследовались следующие водные среды: дистиллированная вода с небольшим содержанием РОВ и водные растворы РОВ, выделенного из природных вод, концентрация которого изменялась путем разбавления пробы дистиллятом.

Полученные экспериментальные результаты сводятся к следующему.

1. Изменения спектров флуоресценции РОВ — величина смещения максимума спектра и изменения флуоресцентного параметра Φ , равного отношению амплитуд спектра флуоресценции РОВ и сигнала комбинационного рассеяния воды, — зависят от мощности излучения и числа импульсов *n*, попадающих в один объем пробы, т. е. от дозы УФоблучения (полученной данным объемом пробы). Под дозой облучения понимается величина W = nE, где n — число импульсов, попадающих в один объем. E = 0.16 мДж — энергия одного лазерного импульса.

На рис. 2 представлены спектры флуоресценции РОВ в воде при различных дозах облучения. Все кривые нормированы на максимум спектральной полосы. На рис. З показана зависимость величины флуоресцентного параметра Ф от дозы облучения.

2. При максимальной скорости прокачки воды через кювету и частоте f=2,5 Гц каждый лазерный импульс попадал в новый объем пробы (n=1). Это было обеспечено выбором геометрии эксперимента и

Рис. 2. Спектры флуоресценции РОВ в воде, полученные при различных значениях частоты повторения лазерных импульсов *f*

Рис. 3. Зависимость величины флуоресцентного параметра Ф, нормированного на Ф при *f*=:100 Гц, от числа лазерных импульсов *n*, попадающих в один и тот же объем пробы: *I* — дистиллированная вода, 2 проба природного РОВ

-77 O

частоты повторения импульсов f. Следовательно, доза W=0,16 мДж, соответствующая одному импульсу, не приводит к изменению характеристик полосы флуоресценции РОВ. Назовем пробу с n=1 «невозмущенной» пробой.

3. Форма спектра флуоресценции РОВ и положение его максимума при $n=1\div30$ практически не меняются. Интенсивность флуоресценции падает не больше чем на 10% относительно «невозмущенной» пробы.

4. Если в один и тот же объем воды попадает больше 30 импульсов лазерного излучения, то полоса флуоресценции смещается в длинноволновую область, а интенсивность флуоресценции падает на 10—50% относительно «невозмущенной» пробы.

5. Изменения спектров флуоресценции РОВ зависят как от дозы облучения УФ-светом, так и от качественного состава пробы. Для дистиллята форма спектра флуоресценции РОВ даже при большой дозе облучения изменяется слабее, чем для использованного препарата природного РОВ в воде.

Изменение формы спектра флуоресценции РОВ под действием УФ-излучения удобнее наблюдать с помощью вычитания спектра, полученного для «невозмущенной» пробы с n = 1, из спектра, полученного для произвольного п. Максимум разностного спектра для природного РОВ (рис. 4) сдвинут в область меньших длин волн ПO сравнению с исходным спектром флуоресценции (рис. 2). Это говорит о том, что фракции РОВ с более коротковолновой полосой флуоресценции подвержены фоторазложению в большей степени, чем остальные.

6. В серии экспериментов, проведенных в режиме без прокачки I, OTH. ed.

Рис. 4. Разностные спектры флуоресценции РОВ различных типов вод: 1 — дистиллированная вода, 2 проба природного РОВ. Для сравнения приведен спектр флуоресценции. РОВ в дистиляте. Все спектральные кривые нормированы на максимум полосы

исследуемой пробы воды, изучался механизм релаксации РОВ. Проба предварительно облучалась лазерными импульсами с частотой повторения f=1 кГц в течение 5 мин ($n=3\cdot10^5$), при этом интенсивность полосы флуоресценции РОВ падает на 50% относительно интенсивности флуоресценции «невозмущенной» пробы. Затем регистрировались спектры флуоресценции, полученные при различных частотах повторения импульсов f=10÷1000 Гц каждый раз после предварительного облучения пробы с j=1 кГц. При этом число лазерных импульсов было постоянно и равно 5.103. Оказалось, что полученные таким образом спектры флуоресценции РОВ отличаются по интенсивности. Так, интенсивность полосы в максимуме при f=10 Гц была наибольшей и составляла 69% от интенсивности спектра флуоресценции «невозмущенной» пробы. Для f=100, 500, 1000 Гц интенсивность составляла соответственно 57%, 52 и 50%. Поскольку доза предварительного облучения пробы намного превосходит дозу облучения, полученную во время регистрации спектра, то можно предположить, что существуют некие механизмы релаксации РОВ, характеризующиеся временами порядка 1 мс÷

والمحطية المراجع

79

 \div 0,1 с. Таким образом, наряду с необратимыми (за времена порядка 5 мин) процессами «фоторазложения» РОВ, которые дают вклад примерно 30% в интенсивность флуоресценции РОВ, существуют и обратимые изменения, доля которых составляет 20%.

ЛИТЕРАТУРА

[1] Чубаров В. В. Определение органических примессй в воде методом лазерной флуориметрии с калибровкой по комбинационному рассеянию света: Автореф. дис. ... канд. физ.-мат. наук. М., 1984. [2] Фадеев В. В. Лазерная спектроскопия водных сред: Дис. ... докт. физ.-мат. наук. М., 1983. [3] Самохина И. А., Тибилов А. С. // Изв. АН СССР, ФАО. 1989. 25, № 3. С. 221. [4] Самохина И. А. Влияние солнечного излучения в УФ-области спектра на изменение оптических свойств морской воды: Автореф. дис. ... канд. физ.-мат. наук. Л., 1990. [5] Карабашев Г. С., Тимошевский А. А. // Океанология, 1980. 20, № 1. С. 148.

Поступила в редакцию 22.01.91

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1991. Т. 32, № 4

ГЕОФИЗИКА

УДК 551.465.552

ПРОФИЛЬ МАСШТАБА ТУРБУЛЕНТНОСТИ В СЛОЕ СМЕШЕНИЯ ТЕЧЕНИЯ, РАСПРОСТРАНЯЮЩЕГОСЯ ВДОЛЬ ТВЕРДОЙ Поверхности

Б. И. Самолюбов

(кафедра физики моря и вод суши)

Аналитически исследуется распределение масштаба турбулентности в слое смешения для разработки методов расчета энерго-массообмена на границах течений, распространяющихся вдоль твердых поверхностей. Из системы уравнений Рейнольдса получены распределения скорости, масштаба турбулентности и напряжения трения. Учитывается влияние спутного течения. Профиль пути смешения, найденный аналитически впервые, аналогичен эпюре удвоенного микромасштаба турбулентности. Теоретические распределения согласуются с измеренными.

Выявить закономерности динамики течения и построить его математическую модель можно, располагая распределениями движущих сил, скорости и коэффициента обмена или масштаба турбулентности по глубине и вдоль по потоку. Особенно важно знать профиль этого масштаба (в данном случае «пути смешения») в неоднородных течениях. К классу неоднородных принадлежат потоки с твердой нижней и свободной верхней границами. Такие условия на границах типичны для широко распространенного в природе и технике вида течений жидкостей и газов.

Придонные потоки в океане и приземные в атмосфере $\{1-3\}$, пристеночные струи в гидро- и аэродинамических сооружениях $\{4, 5\}$ относятся к указанному типу как по условиям на границах, так и по возможности применения ряда общих методов математического моделирования турбулентного обмена [6-8]. Если известны вертикальные распределения масштаба турбулентности l и скорости U, то для расчета обмена применяется модель «пути смешения» (l-модель) [7, 9-12]. Профили скорости этих течений характеризуются ее уменьшением от мак-