РАДИОФИЗИКА

УДК 533.9:533.7

ДИНАМИКА ШИРОКОГО СПЕКТРА КОЛЕБАНИЙ ПРИ РАССЕЯНИИ ЭЛЕКТРОМАГНИТНЫХ ВОЛН НА РЕЛЯТИВИСТСКОМ ПУЧКЕ ЭЛЕКТРОНОВ

Ю. В. Бобылев, В. А. Панин, А. П. Плотников

(кафедра физической электроники)

Исследуется нелинейная теория рассеяния многих мод электромагнитных колебаний на релятивистском электронном пучке. При этом основным механизмом стабилизации неустойчивости, развивающейся в режиме аномального эффекта Доплера, являются следующие два эффекта: торможение пучка и релятивистская зависимость частоты плазменных колебаний пучка от амплитуды. Показано, что в случае монохроматической накачки с ростом релятивизма пучка спектр рассеянной волны уширяется. Если же накачка немонохроматическая, то происходит эффективное возбуждение монохроматической сигнальной волны. При этом КПД процесса может достигать 50— 60%.

Возбуждение широких спектров колебаний при взаимодействии электромагнитных волн с электронными пучками исследовались в работах [1—5]. В основном в них изучалась обычная пучковая неустойчивость в многомодовом режиме.

Рис. 1

Настоящая работа посвящена нелинейной теории рассеяния многих мод электромагнитных колебаний на релятивистском пучке. Пусть сигнальная волна представлена широким набором электромагнитных волн, близких по волновым числам, с амплитудами є_{1s}, и волна накачки пусть тоже характеризуется соответствующим набором амплитуд гол. На рис. 1 показано расположение сигнальных волн и волн накачки на плоскости «частота ω — волновое число k». Для простоты спектры электромагнитных волн считаются линейными, **YTO** справедливо в высокочастотной области. В постановке начальной задачи система уравнений для амплитуд є₁, и є_{2n},

которые взаимодействуют с замагниченным релятивистским пучком электронов, имеет вид

$$\frac{d\varepsilon_{1s}}{d\tau} = -v \frac{1}{s} \sum_{n} \varepsilon_{2n} \widehat{\rho}_{sn} \exp\{i\eta_{0sn}\tau\},$$
$$\frac{d\varepsilon_{2n}}{d\tau} = v \frac{1}{n} \sum_{s} \varepsilon_{1s} \widehat{\rho}_{sn}^* \exp\{-i\eta_{0sn}\tau\},$$
$$\frac{dy}{d\tau} = \frac{1}{\mu} \frac{p^2 - 1}{p^2},$$

(I)

$$\frac{dp}{d\tau} = -\frac{i}{4} \mu \sum_{s,n} \frac{1}{q_{sn}} (\rho_{sn} \exp\{iq_{sn}y\} - K. \ c.) + \\ + \frac{\mu}{4} v \frac{1}{p^3} \sum_{s,n} \frac{q_{sn}}{sn} (e_{1s}e_{2n} \exp\{iq_{sn}y - i\eta_{0sn}\tau\} + K. \ c.), \\ \rho_{sn} = \frac{h}{\pi} \int_{0}^{2\pi/h} dy_0 \exp\{-iq_{sn}y\}, \\ \widehat{\rho}_{sn} = \frac{h}{\pi} \int_{0}^{2\pi/h} dy_0 p^{-3} \exp\{-iq_{sn}y\}.$$

Поясним основные обозначения: τ — время, нормированное на ленгмюровскую частоту электронов пучка, y — координата электрона, p его импульс, h — расстояние между двумя модами на оси волновых чисел,

$$\mathbf{v} = \frac{1}{4} \frac{\omega_6 k_\perp^2 c^2 G}{\Omega_1^2 \sqrt{\omega_1 \omega_2}} \tag{2}$$

— параметр связи электромагнитных волн с пучковыми $(k_{\perp} -$ поперечное волновое число, $\Omega_1^2 = (\omega_1 - k_1 u)^2$, G — геометрический фактор пучка) [7], η_{0sn} — расстройка, причем

$$\eta_{osn} = (s-n) \theta - n,$$

$$q_{sn} = (s-n) \lambda + n,$$
(3)

где $\theta = \Omega_1 / \Omega_b$, $\lambda = k_1 / k_{11} \ (k_{11} = (k_{1s} - k_{2n})|_{s=1; n=1})$,

$$\mu = 2\gamma^2 \frac{\Omega_b}{k_{11}u} \tag{4}$$

— параметр релятивизма, $\gamma = (1-u^2/c^2)^{-1/2}$, *и* — скорость невозмущенного пучка, Ω_b — его ленгмюровская частота. Отметим, что система (1) представляет собой обобщение на многомодовый случай известных уравнений в теории трехволновых взаимодействий [6, 7]. В основе вывода этих уравнений лежит предположение о разделении движения электронов пучка на быстрое (в полях электромагнитных волн) и медленное (в поле комбинационной волны и волны плотности заряда пучка), что позволяет провести разложение фаз взаимодействующих волн и последующее усреднение [6].

В системе (1) первое и второе уравнения описывают динамику безразмерных амплитуд (ε_{1s} и ε_{2n}) *s*-й и *n*-й мод сигнальной волны и волны накачки соответственно, а третье и четвертое — движение электронов пучка в полях пучковой и комбинационных волн.

Уравнения (1) имеют два первых интеграла:

$$\sum_{s} S |\varepsilon_{1s}|^{2} + \sum_{n} n |\varepsilon_{2n}|^{2} = \sum_{s} S |\varepsilon_{1s0}|^{2} + \sum_{n} n |\varepsilon_{2n0}|^{2},$$

$$(1-\lambda)\frac{\mu}{8}\sum_{s}|\varepsilon_{1s}|^{2}-\lambda\frac{\mu}{8}\sum_{n}|\varepsilon_{2n}|^{2}+\frac{\hbar}{2\pi}\int_{0}^{2\pi}pdy_{0}=$$

=(1-\lambda)\frac{\mu}{8}\sum_{s}|\varepsilon_{1s0}|^{2}-\lambda\frac{\mu}{8}\sum_{n}|\varepsilon_{2n0}|^{2}+1, (5)

причем $|\varepsilon_{1s0}| = |\varepsilon_{1s}||_{\tau=0}$, $|\varepsilon_{2n0}| = |\varepsilon_{2n}||_{\tau=0}$, $p|_{\tau=0} = 1$.

Считаем далее, что рассеяние происходит в условиях аномального эффекта Доплера, когда параметр связи [7]

$$v \ll 1.$$
 (6)

В условиях (6) уравнения (1) можно существенно упростить. Используем для этого метод разложения по траекториям и импульсам [9] и представим координату и импульс электрона в виде

$$y = y_0 + w(\tau) + \overline{y}(\tau, y_0),$$

$$p = \langle p \rangle + \frac{1}{2} \sum_{s,n} (a_{sn} \exp{\{iq_{sn}y_0\}} + \kappa. c.).$$
(7)

Здесь $w(\tau)$ описывает постоянное смещение электронов пучка, а \tilde{y} — осцилляционные движения ($\tilde{y}(\tau, y_0) = \tilde{y}(\tau, y_0 + 2\pi/h)$); $\langle p \rangle$ — средний импульс пучка, a_{sn} — амплитуды осцилляций импульса. После подстановки выражений (7) в систему (1), линеаризации экспонент по \tilde{y} и разложения импульсов с точностью, учитывающей нелинейности третьего порядка, получим следующие уравнения для величин ε_{1s} , ε_{2n} , w, ρ_{sn} , a_{sn} :

$$\frac{de_{1s}}{d\tau} = -v \frac{1}{s} \sum_{n} e_{2n} \widehat{\rho}_{sn} \exp \left\{ -iq_{sn} \psi + i\eta_{0sn} \tau \right\},
\frac{de_{2n}}{d\tau} = v \frac{1}{n} \sum_{s} e_{1s} \widehat{\rho}_{sn}^{*} \exp \left\{ iq_{sn} \psi - i\eta_{0sn} \tau \right\},
\frac{dw}{d\tau} = -\frac{1}{4} \left\{ \left[\lambda \sum_{s} s^{4} \left(|e_{1s}|^{2} - |e_{1s0}|^{2} \right) - (1 - \lambda) \sum_{n} n^{4} \left(|e_{2n}|^{2} - |e_{2n0}|^{2} \right) \right] + \frac{6}{\mu} \sum_{s,n} |a_{sn}|^{2} \right\},
-(1 - \lambda) \sum_{n} n^{4} \left(|e_{2m}|^{2} - |e_{2m0}|^{2} \right) \right] + \frac{6}{\mu} \sum_{s,n} |a_{sn}|^{2} \right\},
\frac{d\rho_{sn}}{d\tau} = -\frac{2iq_{sn}}{\mu} \left\{ 1 + \frac{3}{8} \mu \left[\lambda \sum_{k} k^{4} \left(|e_{1k}|^{2} - |e_{1k0}|^{2} \right) - (1 - \lambda) \sum_{m} m^{4} \left(|e_{2m}|^{2} - |e_{2m0}|^{2} \right) \right] + \frac{3}{2} \sum_{k,m} |a_{km}|^{2} \right\} a_{sn},
\frac{da_{sn}}{d\tau} = -\frac{i}{2} \mu \frac{1}{q_{sn}} \rho_{sn} + \frac{1}{2} \mu v \frac{q_{sn}}{sn} \left\{ 1 + \frac{3}{8} \mu \left[\lambda \sum_{k} k^{4} \left(|e_{1k}|^{2} - (1 - \lambda) \sum_{k} m^{4} \left(|e_{2m}|^{2} - |e_{2m0}|^{2} \right) \right] + \frac{3}{2} \left[\lambda \sum_{k} k^{4} \left(|e_{1k}|^{2} - (1 - \lambda) \sum_{k} m^{4} \left(|e_{2m}|^{2} - |e_{2m0}|^{2} \right) \right] + \frac{1}{2} \left[\left[\left[\frac{1}{2} + \frac{3}{8} \right] \left[\left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} + \frac{3}{8} \left[\frac{1}{2} + \frac{3}{8} + \frac{3}{8} \right] \left[\frac{1}{2} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} + \frac{3}{8} \right] \right] \right] \right] + \frac{1}{2} \left[\frac{1}{2} + \frac{3}{8} +$$

30

$$+ 3 \sum_{k,m} |a_{km}|^{2} \left\{ \epsilon_{1s} \epsilon_{2n}^{*} \exp \left\{ i q_{sn} \omega - i \eta_{0sn} \tau \right\}, \\ \widehat{\rho}_{sn} = \left\{ 1 + \frac{3}{8} \mu \left[\lambda \sum_{k} k^{4} \left(|\epsilon_{1k}|^{2} - |\epsilon_{1k0}|^{2} \right) - (1 - \lambda) \sum_{m} m^{4} \left(|\epsilon_{2m}|^{2} - |\epsilon_{2m0}|^{2} \right) \right] + 3 \sum_{k,m} |a_{km}|^{2} \right\} \rho_{sm}.$$

Представим

$$\rho_{sn} = \widetilde{\rho}_{sn} \exp\left\{iq_{sn}w - i\eta_{0sn}\tau\right\},\tag{9}$$

где ρ_{sn} — медленная функция времени. В результате, с учетом неравенства (5) система уравнений (8) сведется к виду

$$\frac{d\varepsilon_{1s}}{d\tau} = -v \frac{1}{s} \sum_{n} \varepsilon_{2n} \widetilde{\rho}_{sn},$$

$$\frac{d\varepsilon_{2n}}{d\tau} = v \frac{1}{n} \sum_{s} \varepsilon_{1s} \widetilde{\rho}_{sn},$$

$$\frac{d\widetilde{\rho}_{sn}}{d\tau} + \frac{i}{2} \delta_{sn} \widetilde{\rho}_{sn} = \frac{1}{2} \frac{q_{sn}^2}{sn\eta_{sn}} \varepsilon_{1s} \varepsilon_{2n}^*,$$
(10)

где

$$\begin{split} \delta_{sn} &= -\frac{\eta_{0sn}^2 - 1}{\eta_{0sn}} - q_{sn} \frac{\eta_{0sn}^2 + 1}{\eta_{0sn}^2} T_1 - \frac{\mu}{\eta_{0sn}} T_2, \\ T_1 &= -\frac{1}{2} \sum_{s,n} \frac{\eta_{0sn}}{q_{sn}} \left(1 - \frac{3}{4} \mu \frac{\eta_{0sn}}{q_{sn}} \right) |\widetilde{\rho}_{sn}|^2, \\ T_2 &= -\frac{3}{4} \sum_{s,n} \frac{\eta_{0sn}}{q_{sn}} \left(1 - \frac{1}{2} \mu \frac{\eta_{0sn}}{q_{sn}} \right) |\widetilde{\rho}_{sn}|^2. \end{split}$$
(11)

Расстройка δ_{sn} состоит из линейной части (первое слагаемое) и нелинейной (второе и третье), которая определяет стабилизацию неустойчивости. Первое слагаемое в выражении для T_1 описывает торможение пучка, а второе вместе с величиной T_2 — релятивистский нелинейный сдвиг частоты, обусловленный зависимостью плазменных колебаний пучка от амплитуды. Если s=n=1, то уравнения (10) совпадают с уравнениями работ [7, 10], которые имеют аналитические решения. В многомодовом случае ($s\neq n\neq 1$) аналитических решений найти не удается. Поэтому рассмотрим результаты численного анализа системы (10).

Остановимся на двух наиболее интересных случаях. Пусть сигнальная волна ε_{1s} задана при $\tau=0$ в виде спектра (s=0,6+kh, h=0,01, k=80), а накачка — монохроматическая (n=1). При этом, как следует из линейного анализа, необходимо, чтобы

$$h < \Delta s \sim 4 \sqrt{2} \frac{v}{\theta} |\varepsilon_{20}|.$$

В противном случае имеет место одномодовый режим рассеяния. Чис-

(12)

ленные расчеты проводились при v=0,05; $\lambda=0,7$; $\theta=1,2$ и следующих начальных условиях: $|\varepsilon_{1s}||_{\tau=0}=0,01$; $|\varepsilon_{2n}||_{\tau=0}=1$. (Нетрудно видеть, что неравенство (12) выполняется с хорошим запасом.) Таким образом, единственным свободным параметром задачи остается μ . На рис. 2 приведена временная динамика спектра сигнальной волны $|\varepsilon_{1s}|$ при различных значениях μ . Сплошной линией изображен спектр $|\varepsilon_{1s}|$ при $\mu=0,6$, а пунктиром — при $\mu=2,5$. Видно, что в обоих случаях возбуждается широкий спектр колебаний, однако для большего μ спектр становится более широким. При $\mu=0,6$ спектр с течением времени заметно смещается влево (смещение в сторону меньших волновых чисел *s* хорошо иллюстрируется рисунком 1), что объясняется доминирующим

влиянием торможения пучка, в то время как при $\mu > 1$ основную роль начинает играть релятивистский механизм стабилизации неустойчивости [11]. В обоих случаях при $\tau \sim 800$ эволюция спектра практически заканчивается, причем амплитуды мод, вышедших из резонанса вследствие нелинейного сдвига частот, не меняются. В отличие от рассматриваемой ситуации, в одномодовой режиме амплитуда нерезонансной моды быстро стремится к нулю [10]. Эффективность преобразования кинетической энергии пучка в энергию излучения определяется формулой

КПД =
$$1 - \frac{h}{2\pi} \int_{0}^{2\pi/h} p dy_0,$$
 (13)

и при $\mu=0.6$ КПД $\simeq 7\%$, а при $\mu=2.5$ КПД $\simeq 24\%$. Отметим, что при $\mu\ll 1$ также возбуждается достаточно широкий спектр $|\epsilon_{1s}|$, но КПД в этом случае мал и составляет доли процента.

Рассмотрим теперь второй случай, когда в процессе рассеяния участвуют монохроматическая сигнальная волна ε_1 (s=1) и спекттральная накачка ε_{2n} (n=0,7+kh; k=100; h=0,01), а остальные параметры те же. На рис. З изображена временная динамика спектра волны накачки при μ =1, а на рис. 4—зависимость от времени т амплитуды сигнальной волны $|\varepsilon_1|$ при μ =1 (сплошная линия) и при μ =2,5 (пунктир). Для сравнения на рис. З изображена также амплитуда $|\varepsilon_{2n}|_{n=1}$. Видно, что спектр волны накачки с течением времени меняется не очень значительно. Однако, как видно из рис. 3, имеет место существенный рост монохроматической сигнальной волны, причем с

ростом параметра релятивизма µ растет амплитуда [ε₁]. Растет соответственно и КПД. Так, при µ=1,0 КПД~15%, а при µ=2,5 КПД~ ≈60%. Последний результат хорошо согласуется с результатами работы [8], в которой исследовалась возможность использования немонохроматической накачки в приборах типа 181 ЛСЭ (лазеров на свободных электронах). Отметим, что дальнейшее уве-

шению КПД. В заключение проведем оценку реальных параметров пучка и длины волны излучения для случая рассеяния в вакуумном волноводе, исходя из безразмерных параметров µ, v. Используя, как и ранее, линейный закон дисперсии электромагнитных мод, получаем

личение параметра и ведет к умень-

Рис. 4

 $k_1 = -k_2 \frac{c+u}{c-u}, \ k_{11} = k_1 - k_2,$ $v = 8 \frac{\pi r_b \Delta}{R^2} \frac{\Omega_b k_\perp^2 \gamma^5}{b^3},$ $\mu = 2\gamma^2 \frac{\Omega_b}{k_{11}u}.$

(14)

Нетрудно видеть, что длина рассеянной волны определяется соотношением $\Lambda_1 \sim \Lambda_2 \gamma^{-2}$. Зададим радиус волновода R=2 см ($k_\perp = \mu_1/R$), радиус пучка $r_b = 1$ см, толщину пучка $\Delta = 0,1$ см и $\gamma \sim 3$. Тогда для $\nu = 0,05$, изменяя параметр µ от 0,6 до 2,5, получаем диапазон изменения плотности пучка от $3 \cdot 10^{10}$ см⁻³ ($\Omega_b \sim 10^{10}$ с⁻¹) до $3 \cdot 10^{12}$ см⁻³ ($\Omega_b \sim 10^{11}$ с⁻¹).

ЛИТЕРАТУРА

[1] Шапиро В. Д., Шевченко В. И.//Изв. вузов, Радиофизика. 1976. 19, № 5-6. С. 787. [2] Рогашкова А. И., Цейтлин Н. Б., Вилкова Л. П.//Изв. вузов, Радиофизика. 1974. 17, № 5. С. 659. [3] Кузелев М. В., Панин В. А., Плотников А. П., Рухадзе А. А.//Кр. сообщ. по физике ФИАН. 1987. № 6. С. 24. [4] Куклин В. М., Панченко И. П., Хакимов Ф. Х. Многоволновые процессы в физике плазмы. Душанбе, 1989. [5] Кузелев М. В., Панин В. А., Плотников А. П.//Радиотехн. и электроника. 1989. 34, № 9. С. 1918. [6] Брат-ман В. А., Гинзбург Н. С., Петелин М. И.//ЖЭТФ. 1979. 76, № 3. С. 930. [7] Кузелев М. В., Панин В. А.//Изв. вузов, Радиофизика. 1984. 27, № 4. С. 426. [8] Гинзбург Н. С.//Письма в ЖТФ. 1984. 10, № 10. С. 586. [9] Кузелев М. В., Рухадзе А. А., Бобылев Ю. В., Панин В. А.//Изв. вузов, Радиофизика. 1986. 91, № 5 (11). С. 1620. [10] Кузелев М. В., Бобылев Ю. В., Панин В. А.//Изв. вузов, Радио-физика. 1988. 31, № 10. С. 1193. [11] Кузелев М. В., Панин В. А., Плотни-ков А. П., Рухадзе А. А.//ЖЭТФ. 1989. 96, № 3 (9). С. 865. [1] Шапиро В. Д., Шевченко В. И.//Изв. вузов, Радиофизика. 1976. 19,

> Поступила в редакцию 19.10.90